• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Pavement Temperature on Frictional Properties of Pavement Surfaces at the Virginia Smart Road

Luo, Yingjian 06 February 2003 (has links)
Wet-pavement friction is a public concern because of its direct relation to highway safety. Both short- and long-term seasonal variations have been observed in friction measurements. These variations have been attributed to different factors, such as traffic, rainfall, and temperature. Since both the tire rubber and the HMA pavement surface are viscoelastic materials, which are physically sensitive to temperature changes, temperature should affect the measured frictional properties. Although several researchers have attempted to explain and quantify the effect of temperature on pavement friction, it remains to be fully understood. The objective of this research was to quantify the effect of pavement surface temperature on the frictional properties of the pavement-tire interface. To accomplish this, tests conducted on seven different wearing surfaces at the Virginia Smart Road under different climatic conditions were analyzed. Due to the short duration of this study and the low traffic at the facility, only short-term effects of temperature on pavement friction were investigated. To accomplish the predefined objective, skid test data from both ribbed and smooth tires were collected over two and a half years (from January 2000 to August 2002) and then analyzed. Six sets of tests were conducted under different environmental conditions. The pavement and air temperatures during each test were obtained using thermocouples located directly under the wearing course (38mm below the surface) and close to the pavement surface, respectively. Regression analyses were conducted to determine the effect of pavement temperature on the measured skid number at different speeds, as well as on friction model parameters. The main conclusion of this investigation is that pavement temperature has a significant effect on pavement frictional measurements and on the sensitivity of the measurements to the test speed. Both the skid number at zero speed (SN0) and the percent normalized gradient (PNG) tend to decrease with increased pavement temperature. This results in the pavement temperature on the measured skid number being dependent on the testing speed. For the standard wearing surface mixes studied at low speed (lower than 32 km/hr), pavement friction tends to decrease with increased pavement temperature. At high speed, the effect is reverted and pavement friction tends to increase with increased pavement temperature. Temperature-dependent friction versus speed models were established for one of the mixes studied. These models can be used to define temperature correction factors. / Master of Science
2

Reducing Highway Crashes with Network-Level Continuous Friction Measurements

McCarthy, Ross James 16 December 2019 (has links)
When a vehicle changes speed or direction, the interaction between the contacting surfaces of the tire and the pavement form frictional forces. The pavement's contribution to tire-pavement friction is referred to as skid resistance and is provided by pavement microtexture and macrotexture. The amount of skid resistance depreciates over time due to the polishing action of traffic, and for this reason, the skid resistance should be monitored with friction testing equipment. The equipment use one of four test methods to measure network-level friction: ASTM E 274 locked-wheel, ASTM E 2340 fixed-slip technique, ASTM E 1859 variable-slip technique, and sideways-force coefficient (SFC) technique. The fixed-slip, variable-slip, and SFC techniques are used in continuous friction measurement equipment (CFME). In the United States, skid resistance is traditionally measured with a locked-wheel skid trailer (LWST) equipped with either a ASTM E 501 ribbed or a ASTM E 524 smooth 'no tread' tire. Since the LWST fully-locks the test wheel to measure friction, it is only capable of spot testing tangent sections of roadway. By contrast, the remaining three test methods never lock their test wheels and, therefore, they can collect friction measurements continuously on all types of roadway, including curves and t-intersections. For this reason, highway agencies in the U.S. are interested in transitioning from using a LWST to using one of three continuous methods. This dissertation explores the use of continuous friction measurements, collected with a Sideways-force Coefficient Routine Investigation Machine (SCRIM), in a systemic highway safety management approach to reduce crashes that result in fatalities, injuries, and property damage only. The dissertation presents four manuscripts. In the first manuscript, orthogonal regression is used to develop models for converting between friction measurements with a SCRIM and LWST with both a ribbed and smooth tire. The results indicated that the LWST smooth tire measured friction with greater sensitivity to changes in macrotexture than the SCRIM and LWST ribbed tire. The SCRIM also had greater correlation to the LWST ribbed tire than the LWST smooth tire. The second investigation establishes the relationship between friction measured with a SCRIM and the risk of crashes on dry and wet pavement surfaces. The results of this showed that increasing friction decreases both dry and wet pavement crashes; however, friction was found to have greater impact in wet conditions. Due to the negative relationship between friction and crashes, eventually there will be a point where further losses in friction can result in a rapid increase in crash risk. This point can be identified with a friction threshold known as an investigatory level. When measured friction is at or below the investigatory level, an in- and out-of-field investigation is required to determine whether a countermeasure is necessary to improve safety. The third manuscript proposes a statistical regression approach for determining investigatory levels. Since this approach relies on statistical regression, the results are objective and should be the same for any analyst reviewing the same data. The investigatory levels can be used in a systemic approach that identifies locations where crashes can be reduced based on a benefit-cost analysis of surface treatments. Last, the forth manuscript demonstrates a benefit-cost analysis that selects surface treatments based on crash reductions predicted with continuous friction measurements. / Doctor of Philosophy / When a vehicle changes speed or direction, the tires slide over the pavement surface, creating friction that produces the traction that is necessary for the vehicle to change speed or direction. Friction can diminish when water, dust, and other contaminants are present, or over time due to traffic. Over time, the loss in friction causes the risk of a crash to increase. However, this relationship is non-linear, and therefore, eventually there will be a point where further losses in friction can cause a rapid increase in crash risk. For this reason, the pavement friction is monitored with equipment that slides a rubber tire with known properties over a pavement surface. Since friction is lowest when the pavement is wet, the equipment applies a film of water to the surface directly in front of the sliding tire. There are different types of equipment used to measure friction. The physical designs of the equipment and their method of testing may be different. For example, some devices measure friction by sliding a wheel that is angled away from the path of the vehicle, while others slide a wheel that is aligned with the vehicle but reduced in speed compared to the vehicle. The factors that make the equipment different can affect the quantity of friction that is measured, as well as the timing between each consecutive measurement. The advantages that some equipment offers can entice highway agencies to transition from a pre-existing system to a more advantageous system. Before transitioning, the measurements from the two types of equipment should be compared directly to determine their correlation. Statistical regression can also be used to develop models for converting the measurements from the new equipment to the units of the current, which can help engineers interpret the measurements, and to integrate them into an existing database. The presence of water on a pavement surface can result in a temporary loss of friction that can increase the risk of a crash beyond the normal, dry pavement state. This does not guarantee that dry pavements have sufficient friction as is suggested in most literature. In this dissertation, the relationship between friction and the risk of a crash on dry and wet pavements are evaluated together. The results show that increasing friction can decrease the crash risk on both dry and wet pavement surfaces. The amount of friction that is needed to maintain low crash risk is not the same for every section of road. Locations such as approaches to curves or intersections can increase the risk of a crash, and for that reason, some sections of roadway require more friction than others. Minimum levels of friction called investigatory levels can be established to trigger an in- and out-of-field investigation to determine whether improving friction can improve safety when the measured friction is at or below a specific value. This dissertation proposes a methodology for determining the investigatory levels of friction for different sections of roadway using a statistical regression approach. The investigatory levels are then used to identify locations where pavement surface treatments can reduce crashes based on a benefit-cost analysis. Last, the ability of a surface treatment to reduce crashes is evaluated using another statistical regression approach that predicts changes in crash risk using friction measurements. Since there are several treatment options, a treatment is selected based on estimated cost and benefit.
3

Investigation of Skid Resistance on Asphalt Pavements in Utah

Smith, Aaron B 02 May 2022 (has links)
Friction is one of the essential aspects of pavement performance and safety. Unfortunately, the rate at which the friction data are being collected exceeds the rate at which the data can be proficiently analyzed. Furthermore, the Utah Department of Transportation (UDOT) lacks long-term trend analysis for the many years of locked-wheel skid trailer (LWST) data collected in Utah. In addition, UDOT is missing a statistically adequate correlation equation between friction-testing devices. Likewise, only one method is used in Utah to prequalify aggregates for use in pavements. Finally, there has not been an investigation of the potential use of lithium silicate solution in Utah as a hardening agent to decrease the rate of friction loss. This research consists of five objectives. The first objective was to investigate pavement friction factors that influence skid resistance; methods of measuring skid resistance in the laboratory and the field, including correlations between test results; methods of evaluating aggregate sources; and methods of enhancing skid resistance of asphalt pavements through a comprehensive literature review on these subjects. The second objective was to investigate temporal trends in skid numbers measured using the LWST on Utah highways with different surface treatment types. The third objective was to develop a three-way correlation between the skid number measured with the LWST in the field, the British pendulum number measured with the British pendulum tester (BPT) in the field, and the polish value measured with the BPT in the laboratory. The fourth objective was to investigate selected performance-related properties of aggregates used to produce surface treatments at several field sites representing Utah conditions. The fifth objective was to examine the potential benefits of lithium silicate treatment for improving the resistance of aggregates to polishing. The scope of the research for the five objectives included statistical analysis, field testing, and laboratory experimentation. The findings include, first, a literature review that identified four critical deficiencies in Utah’s friction-related literature, which formed the basis of the remaining four objectives. Second, a statistical analysis of 9 years of LWST data indicated above-average skid values across Utah’s pavement network. Third, correlations were evaluated for multiple friction-testing devices. Fourth, X-ray diffraction testing methods were found to compare favorably to the accelerated polish test. Fifth and finally, the effects of lithium silicate solution on polish-susceptible aggregates were documented. This research has substantially advanced the body of knowledge on pavement friction testing and improving the resistance of aggregates to polishing in Utah through laboratory and field experimentation

Page generated in 0.1012 seconds