Spelling suggestions: "subject:"skin number"" "subject:"suid number""
1 |
Quantifying the Relationship Between Skid Resistance and Wet Weather Accidents for Virginia DataKuttesch, Jeffrey S. 13 December 2004 (has links)
One of the factors contributing to motor vehicle crashes is lack of sufficient friction at the tire-pavement interface. Although the relationship between surface friction and roadway safety has long been recognized, attempts to quantify the effect of pavement skid resistance on wet accident rates have produced inconsistent results. This thesis analyzes the relationships between skid resistance, accident, and traffic data for the state of Virginia. The correlation between wet skid resistance measured with a locked-wheel trailer using a smooth tire and wet accident rates is examined. Additionally, the influence of traffic volumes on accident rates is considered.
The research used accident and skid data from the Virginia wet accident reduction program as well as from sections without pre-identified accident or skid problems. The wet accident data was aggregated in 1.6 km (1 mi) sections and divided by the annual traffic to obtain wet accident rates. The minimum skid number measured on each of these sections was then obtained and added to the database.
Regression analyses indicated that there is statistically significant effect of skid resistance on wet accident rate; the wet accident rate increases with decreasing skid numbers. However, as expected, skid resistance alone does a poor job of modeling the variability in the wet accident rates. In addition, the wet accident rate also decreases with increasing traffic volume. Based on the data studied, a target skid number (SN(64)S) of 25 to 30 appears to be justified. / Master of Science
|
2 |
The Effect of Pavement Temperature on Frictional Properties of Pavement Surfaces at the Virginia Smart RoadLuo, Yingjian 06 February 2003 (has links)
Wet-pavement friction is a public concern because of its direct relation to highway safety. Both short- and long-term seasonal variations have been observed in friction measurements. These variations have been attributed to different factors, such as traffic, rainfall, and temperature. Since both the tire rubber and the HMA pavement surface are viscoelastic materials, which are physically sensitive to temperature changes, temperature should affect the measured frictional properties. Although several researchers have attempted to explain and quantify the effect of temperature on pavement friction, it remains to be fully understood.
The objective of this research was to quantify the effect of pavement surface temperature on the frictional properties of the pavement-tire interface. To accomplish this, tests conducted on seven different wearing surfaces at the Virginia Smart Road under different climatic conditions were analyzed. Due to the short duration of this study and the low traffic at the facility, only short-term effects of temperature on pavement friction were investigated.
To accomplish the predefined objective, skid test data from both ribbed and smooth tires were collected over two and a half years (from January 2000 to August 2002) and then analyzed. Six sets of tests were conducted under different environmental conditions. The pavement and air temperatures during each test were obtained using thermocouples located directly under the wearing course (38mm below the surface) and close to the pavement surface, respectively. Regression analyses were conducted to determine the effect of pavement temperature on the measured skid number at different speeds, as well as on friction model parameters.
The main conclusion of this investigation is that pavement temperature has a significant effect on pavement frictional measurements and on the sensitivity of the measurements to the test speed. Both the skid number at zero speed (SN0) and the percent normalized gradient (PNG) tend to decrease with increased pavement temperature. This results in the pavement temperature on the measured skid number being dependent on the testing speed. For the standard wearing surface mixes studied at low speed (lower than 32 km/hr), pavement friction tends to decrease with increased pavement temperature. At high speed, the effect is reverted and pavement friction tends to increase with increased pavement temperature. Temperature-dependent friction versus speed models were established for one of the mixes studied. These models can be used to define temperature correction factors. / Master of Science
|
3 |
Modeling the Locked-Wheel Skid Tester to Determine the Effect of Pavement Roughness on the International Friction IndexCummings, Patrick 11 June 2010 (has links)
Pavement roughness has been found to have an effect on the coefficient of friction measured with the Locked-Wheel Skid Tester (LWT) with measured friction decreasing as the long wave roughness of the pavement increases. However, the current pavement friction standardization model adopted by the American Society for Testing and Materials (ASTM), to compute the International Friction Index (IFI), does not account for this effect. In other words, it had been previously assumed that the IFI's speed constant (SP), which defines the gradient of the pavement friction versus speed relationship, is an invariant for any pavement with a given mean profile depth (MPD), regardless of its roughness. This study was conducted to quantify the effect of pavement roughness on the IFI's speed constant. The first phase of this study consisted of theoretical modeling of the LWT using a two-degree of freedom vibration system. The model parameters were calibrated to match the measured natural frequencies of the LWT. The calibrated model was able to predict the normal load variation during actual LWT tests to a reasonable accuracy. Furthermore, by assuming a previously developed skid number (SN) versus normal load relationship, even the friction profile of the LWT during an actual test was predicted reasonably accurately. Because the skid number (SN) versus normal load relationship had been developed previously using rigorous protocol, a new method that is more practical and convenient was prescribed in this work. This study concluded that higher pavement long-wave roughness decreases the value of the SP compared to a pavement with identical MPD but lower roughness. Finally, the magnitude of the loss of friction was found to be governed by the non-linear skid number versus normal load characteristics of a pavement.
|
4 |
Improvement to Highway Safety through Network Level Friction Testing and Cost Effective Pavement MaintenanceAbd El Halim, Amir, Omar January 2010 (has links)
Pavements encompass a significant component of the total civil infrastructure investment. In Ontario, the Ministry of Transportation (MTO) is responsible for the maintenance and construction of approximately 39,000 lane-kilometres of highway. In 2004, the province estimated the value of the total highway system at $39 billion dollars. Thus, managing this asset is an important factor to ensure a high level of service to the traveling public. One of the most important indicators of level of service for a road network is safety. Each year, thousands of motorists across North America are involved in motor vehicle collisions, which result in property damage, congestion, delays, injuries and fatalities. The MTO estimated that in 2002, vehicle collisions in Ontario cost nearly $11 billion.
Despite the importance of highway safety, it is usually not considered explicitly in the pavement management framework or maintenance analysis. A number of agencies across North America collect skid data to assess the level of safety at both the project and network level (Li et al, 2004). However, a number of transportation agencies still do not collect friction data as part of their regular pavement data collection programs. This is related to both liability concerns and lack of knowledge for how this data can be effectively used to improve safety. The transportation industry generally relies on information such as collision rates, black-spot locations and radius of curvature to evaluate the level of safety of an alignment (Lamm et al., 1999). These are important factors, but the use of complementary skid data in an organized proactive manner would also be beneficial.
In preparation for a considered Long Term Area Maintenance Contract, a project was initiated by the MTO to collect network level friction data across three regions in the Province of Ontario. This project represents the first time friction data was collected at the network level in Ontario. In 2006, approximately 1,800 km of the MTO highway network was surveyed as a part of this study. This research utilized the network level skid data along with collision data to examine the relationships and model the impacts of skid resistance on the level of safety. Despite the value of collecting network level skid data, many Canadian transportation agencies still do not collect network level skid data due to the costs and potential liability associated with the collected data.
The safety of highway networks are usually assessed using various levels of service indicators such as Wet-to-Dry accident ratio (W/D), surface friction (SN), or the collision rate (CR). This research focused on developing a framework for assessing the level of safety of a highway network in terms of the risk of collision based on pavement surface friction. The developed safety framework can be used by transportation agencies (federal, state, provincial, municipal, etc.) or the private sector to evaluate the safety of their highway networks and to determine the risk or probability of a collision occurring given the level of friction along the pavement section of interest. As a part of the analysis, a number of factors such as Region, Season of the Year, Environmental Conditions, Road Surface Condition, Collision Severity, Visibility and Roadway Location were all investigated. Statistical analysis and modeling were performed to developed relationships which could relate the total number of collisions or the collision rate (CR) to the level of available pavement friction on a highway section. These models were developed using over 1,200 collisions and skid test results from two Regions in the Province of Ontario. Another component of this study examined the Wet-to-Dry accident ratio and compared it to the Skid Number. A number of Transportation Agencies rely on the Wet-to-Dry accident ratio to identify potential locations with poor skid resistance. The results of the comparison further demonstrated the need and importance of collecting network level skid data.
Another component of this study was to evaluate the effectiveness of various preservation treatments used within the Long Term Pavement Performance (LTPP) study. In addition, modeling was performed which examined the historical friction trends over time within various environment zones across North America to investigate skid resistance deterioration trends. The results of the analysis demonstrated that commonly used preservation treatments can increase skid resistance and improve safety.
The cost effectiveness of implementing preservation and maintenance to increase the level of safety of a highway using Life Cycle Cost Analysis (LCCA) was evaluated. A Decision Making Framework was developed which included the formulation of a Decision Matrix that can be used to assist in selecting a preservation treatment for a given condition. The results of this analysis demonstrate the savings generated by reducing the number of collisions as a result of increasing skid resistance.
The results of this research study have demonstrated the importance of network level friction testing and the impact of skid resistance on the level of safety of a highway. A review of the literature did not reveal any protocol or procedures for sampling or minimum test interval requirements for network level skid testing using a locked-wheel tester. Network level friction testing can be characterized as expensive and time-consuming due to the complexity of the test. As a result, any reduction in the required number of test points is a benefit to the transportation agency, private sector (consultants and contractors) and most importantly, the public. An analysis approach was developed and tested that can be used to minimize the number of required test locations along a highway segment using common statistical techniques.
|
5 |
Improvement to Highway Safety through Network Level Friction Testing and Cost Effective Pavement MaintenanceAbd El Halim, Amir, Omar January 2010 (has links)
Pavements encompass a significant component of the total civil infrastructure investment. In Ontario, the Ministry of Transportation (MTO) is responsible for the maintenance and construction of approximately 39,000 lane-kilometres of highway. In 2004, the province estimated the value of the total highway system at $39 billion dollars. Thus, managing this asset is an important factor to ensure a high level of service to the traveling public. One of the most important indicators of level of service for a road network is safety. Each year, thousands of motorists across North America are involved in motor vehicle collisions, which result in property damage, congestion, delays, injuries and fatalities. The MTO estimated that in 2002, vehicle collisions in Ontario cost nearly $11 billion.
Despite the importance of highway safety, it is usually not considered explicitly in the pavement management framework or maintenance analysis. A number of agencies across North America collect skid data to assess the level of safety at both the project and network level (Li et al, 2004). However, a number of transportation agencies still do not collect friction data as part of their regular pavement data collection programs. This is related to both liability concerns and lack of knowledge for how this data can be effectively used to improve safety. The transportation industry generally relies on information such as collision rates, black-spot locations and radius of curvature to evaluate the level of safety of an alignment (Lamm et al., 1999). These are important factors, but the use of complementary skid data in an organized proactive manner would also be beneficial.
In preparation for a considered Long Term Area Maintenance Contract, a project was initiated by the MTO to collect network level friction data across three regions in the Province of Ontario. This project represents the first time friction data was collected at the network level in Ontario. In 2006, approximately 1,800 km of the MTO highway network was surveyed as a part of this study. This research utilized the network level skid data along with collision data to examine the relationships and model the impacts of skid resistance on the level of safety. Despite the value of collecting network level skid data, many Canadian transportation agencies still do not collect network level skid data due to the costs and potential liability associated with the collected data.
The safety of highway networks are usually assessed using various levels of service indicators such as Wet-to-Dry accident ratio (W/D), surface friction (SN), or the collision rate (CR). This research focused on developing a framework for assessing the level of safety of a highway network in terms of the risk of collision based on pavement surface friction. The developed safety framework can be used by transportation agencies (federal, state, provincial, municipal, etc.) or the private sector to evaluate the safety of their highway networks and to determine the risk or probability of a collision occurring given the level of friction along the pavement section of interest. As a part of the analysis, a number of factors such as Region, Season of the Year, Environmental Conditions, Road Surface Condition, Collision Severity, Visibility and Roadway Location were all investigated. Statistical analysis and modeling were performed to developed relationships which could relate the total number of collisions or the collision rate (CR) to the level of available pavement friction on a highway section. These models were developed using over 1,200 collisions and skid test results from two Regions in the Province of Ontario. Another component of this study examined the Wet-to-Dry accident ratio and compared it to the Skid Number. A number of Transportation Agencies rely on the Wet-to-Dry accident ratio to identify potential locations with poor skid resistance. The results of the comparison further demonstrated the need and importance of collecting network level skid data.
Another component of this study was to evaluate the effectiveness of various preservation treatments used within the Long Term Pavement Performance (LTPP) study. In addition, modeling was performed which examined the historical friction trends over time within various environment zones across North America to investigate skid resistance deterioration trends. The results of the analysis demonstrated that commonly used preservation treatments can increase skid resistance and improve safety.
The cost effectiveness of implementing preservation and maintenance to increase the level of safety of a highway using Life Cycle Cost Analysis (LCCA) was evaluated. A Decision Making Framework was developed which included the formulation of a Decision Matrix that can be used to assist in selecting a preservation treatment for a given condition. The results of this analysis demonstrate the savings generated by reducing the number of collisions as a result of increasing skid resistance.
The results of this research study have demonstrated the importance of network level friction testing and the impact of skid resistance on the level of safety of a highway. A review of the literature did not reveal any protocol or procedures for sampling or minimum test interval requirements for network level skid testing using a locked-wheel tester. Network level friction testing can be characterized as expensive and time-consuming due to the complexity of the test. As a result, any reduction in the required number of test points is a benefit to the transportation agency, private sector (consultants and contractors) and most importantly, the public. An analysis approach was developed and tested that can be used to minimize the number of required test locations along a highway segment using common statistical techniques.
|
6 |
Investigation of Skid Resistance on Asphalt Pavements in UtahSmith, Aaron B 02 May 2022 (has links)
Friction is one of the essential aspects of pavement performance and safety. Unfortunately, the rate at which the friction data are being collected exceeds the rate at which the data can be proficiently analyzed. Furthermore, the Utah Department of Transportation (UDOT) lacks long-term trend analysis for the many years of locked-wheel skid trailer (LWST) data collected in Utah. In addition, UDOT is missing a statistically adequate correlation equation between friction-testing devices. Likewise, only one method is used in Utah to prequalify aggregates for use in pavements. Finally, there has not been an investigation of the potential use of lithium silicate solution in Utah as a hardening agent to decrease the rate of friction loss. This research consists of five objectives. The first objective was to investigate pavement friction factors that influence skid resistance; methods of measuring skid resistance in the laboratory and the field, including correlations between test results; methods of evaluating aggregate sources; and methods of enhancing skid resistance of asphalt pavements through a comprehensive literature review on these subjects. The second objective was to investigate temporal trends in skid numbers measured using the LWST on Utah highways with different surface treatment types. The third objective was to develop a three-way correlation between the skid number measured with the LWST in the field, the British pendulum number measured with the British pendulum tester (BPT) in the field, and the polish value measured with the BPT in the laboratory. The fourth objective was to investigate selected performance-related properties of aggregates used to produce surface treatments at several field sites representing Utah conditions. The fifth objective was to examine the potential benefits of lithium silicate treatment for improving the resistance of aggregates to polishing. The scope of the research for the five objectives included statistical analysis, field testing, and laboratory experimentation. The findings include, first, a literature review that identified four critical deficiencies in Utah’s friction-related literature, which formed the basis of the remaining four objectives. Second, a statistical analysis of 9 years of LWST data indicated above-average skid values across Utah’s pavement network. Third, correlations were evaluated for multiple friction-testing devices. Fourth, X-ray diffraction testing methods were found to compare favorably to the accelerated polish test. Fifth and finally, the effects of lithium silicate solution on polish-susceptible aggregates were documented. This research has substantially advanced the body of knowledge on pavement friction testing and improving the resistance of aggregates to polishing in Utah through laboratory and field experimentation
|
Page generated in 0.0464 seconds