• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 187
  • 61
  • 42
  • 31
  • 20
  • 14
  • 14
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 415
  • 415
  • 206
  • 122
  • 119
  • 100
  • 100
  • 99
  • 97
  • 78
  • 66
  • 62
  • 60
  • 59
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Metodologia para projeto, construção e ensaios em máquina síncrona de imã permanente - MSIP / Methodology for design, construction and testing on permanent magnet synchronous machine - PMSM

Fernando Henrique Pisani Teixeira 18 August 2006 (has links)
A grande aplicação residencial de motores de indução monofásicos é em sistemas de refrigeração doméstica/comercial. O desenvolvimento de motores mais eficientes, associado ao controle de velocidade, fez com que, dentro os mais diversos tipos de motores, o motor síncrono de imã permanente tornasse objeto para a criação de uma metodologia de projeto, construção e realização de ensaios. Assim, para adequar o projeto do motor MSIP para substituição do motor de indução monofásico, foram feitos estudos de como aproveitar as laminações já existentes, através de definições das características básicas do estator e do rotor. O imã permanente a ser utilizado foi definido principalmente em função do custo do material e de suas propriedades magnéticas estarem adequadas à necessidade do projeto. O projeto magnético foi feito para maximizar o fluxo nos dentes, considerando as características construtivas e a curva de trabalho dos imãs. O projeto elétrico, a partir de um circuito equivalente do motor, permitiu explicar as relações de torque, corrente e tensão do motor MSIP, bem como a definição das bobinas do motor, quanto ao espaçamento destas entre as ranhuras, o cálculo do número de espiras e o diâmetro dos fios em função da área permitida pela ranhura da lamina do estator. Com as informações obtidas após o cálculo do motor MSIP, passou-se a construção de um protótipo constituído pelo estator, rotor e um sistema de suporte que permitisse o levantamento dos parâmetros do motor. Os parâmetros necessários foram definidos levando-se em consideração a necessidade para o projetista do conversor elétrico, sendo estes dados utilizados em simulações computacionais para a determinação do projeto do acionador. Com isto, os ensaios do motor MSIP permitiram o levantamento dos seguintes parâmetros: resistência, indutância, curvas de tensão de fase e linha da eletromotriz por velocidade em diversas rotações, momento de inércia e atrito viscoso, concluindo assim a proposta deste trabalho, e finalizando a metodologia para o motor MSIP. / A major residential application of single-phase induction motors is in domestic refrigeration. The development of more efficient motors, associated with speed control, has made that, among the most diverse types of electrical motors, the permanent magnet synchronous machine becomes an object of study for a design, construction and testing methodology. Therefore, to suit the PMSM design to replace the single phase induction motor, studies were made on how to take advantage of existing laminations, through definitions of the basic characteristics of the stator and rotor. The permanent magnet used was defined mainly as a function of the cost of the material and its magnetic properties since they suit the design requirements. PMSM magnetic design was made to maximize the magnetic flow in the slots considering the constructive characteristics and the magnet curve. The electric design, starting from a motor equivalent circuit, allowed to explain torque, current and voltage of the PMSM motor, as well as the definition of the motor windings regarding their filling in the slots, the calculation of coil number and the wire diameter as a function of the area allowed by the stator lamination slot. With the information obtained after the PMSM motor calculation, a prototype construction was initiated consisting of the stator, rotor and a support system to allow determining the motor parameters. The required parameters were defined taking into account the need the designer had of an electronic drive had. This data was used in computational simulations to determine the electronic driver design. After this, the motor testing allowed to identify the parameters, namely: winding resistance and inductance, various speed curves versus phase to phase and line voltage for back emf´s, moment of inertia and viscous friction, thus completing this work proposal, finalizing the project methodology for PMSM motor.
212

Influência do efeito de extremidade de atuadores eletromagnéticos lineares nas indutâncias

Boff, Ben Hur Bandeira January 2018 (has links)
Este trabalho demonstra que o efeito de extremidade existente em atuadores eletromagnéticos lineares pode ter influência significativa nas indutâncias próprias, mútuas e síncronas, com valores dependentes da posição que podem ser utilizados para monitoração da posição axial da armadura. O estudo é aplicado a um atuador eletromagnético linear tubular de ímãs permanentes com duplo arranjo de quase-Halbach e bobina móvel, que foi concebido para fins de uso em sistemas de suspensão eletromagnética ativa e semi-ativa. A partir da revisão de literatura apresentada, classificou-se o efeito de extremidade de máquinas lineares síncronas de ímãs permanentes quanto aos tipos, causas, consequências e técnicas de mitigação (caso seja necessário). Adicionalmente, os tipos de controle sem sensores são exemplificados a fim de se identificar maneiras possíveis de adequar algum ao atuador em estudo. São apresentados casos de trabalhos na literatura que utilizam o controle sem sensores em máquinas que possuem indutâncias com comportamento semelhante. Em termos de análise, a distribuição do fluxo magnético no atuador é estudada e um modelo semianalítico é elaborado para calcular o valor das indutâncias com base nos dados de fluxo magnético obtido por simulação numérica. Logo, modelos numéricos completos e parametrizados do atuador são elaborados para simulação transiente e magnetostática e a partir destes as indutâncias são obtidas. As indutâncias também são medidas experimentalmente e na análise dos resultados as incertezas de medição são calculadas e um projeto de experimento é apresentado. Os resultados dos modelos semianalítico e numérico apresentam boa concordância com os resultados experimentais. Por fim, a adequação do atuador para futura aplicação de controle sem sensores é discutida tendo como base a variação de indutâncias devido ao efeito de extremida. / This work demonstrates that the end effect in linear electromagnetic actuators can have a significant influence on the self-, mutual and synchronous inductances, with positiondependent values that can be used to measure the axial position of the armature. The study is applied to a linear synchronous electromagnetic actuator with two arrangements of quasi- Halbach permanent magnets and moving coil, which was designed for use in active and semiactive electromagnetic suspension systems. Based on the literature review presented, the end effect of permanent magnet synchronous linear machines was classified with regard to: types, causes, consequences and mitigation techniques (if necessary). In addition, the types of sensorless control methods are exemplified in order to identify a possible method to be applied to the actuator under study. It was found in the literature that sensorless control was applied to machines that have inductances with similar behavior. In terms of analysis, the distribution of the magnetic flux in the actuator is studied and a semi-analytical model was developed to calculate the value of the inductances based on the data of magnetic flux obtained through numerical simulation. Thus, the complete parametrized numerical models of the actuator were built for transient and magnetostatic simulation, and from these the inductances were obtained. The inductances are also measured experimentally, and in the analysis of the results the measurement uncertainties are calculated and a design of experiments is presented. The results of the semi-analytical and numerical models show good agreement with the experimental results. Finally, the suitability of the actuator for future application of sensorless control is discussed based on the variation of inductances due to the end effect.
213

Dimensionnement multi-physique des véhicules hybrides, de leurs composants et de la commande du système / Multiphysics sizing of components and energy management of hybrid electric vehicle systems

Le guyadec, Mathias 01 October 2018 (has links)
Le transport routier est au cœur des enjeux environnementaux actuels. Les véhicules électriques hybrides (VEH) sont une alternative intéressante, notamment en milieu urbain. Cependant, la conception de tels systèmes est complexe car la chaîne de traction (composants et architecture), la mission et la gestion énergétique du véhicule sont intimement liées.Les travaux de V. Reinbold ont permis de mettre au point une méthodologie de dimensionnement de VEH. Les composants sont optimisés conjointement avec la gestion énergétique sur un cycle de fonctionnement afin de minimiser la consommation de carburant du véhicule. Une attention particulière est portée à la conception fine de la machine électrique via un modèle électromagnétique adapté à l’optimisation.Dans la suite de ces travaux, nous approfondissons plusieurs aspects du dimensionnement des VEH. Tout d’abord, nous introduisons la possibilité de gérer des paramètres discrets de la machine, comme le nombre de paires de pôles. Dans un second temps, nous développons un modèle thermique de la machine prenant notamment en compte les échanges autour des têtes de bobine. Ce modèle analytique par réseau de résistances thermiques est intégré puis utilisé dans le processus de dimensionnement par optimisation. Il a été préalablement validé via un modèle par éléments finis. Des méthodes d’analyse d’incertitude et de sensibilité sont appliquées afin de quantifier l’influence de certains paramètres thermiques. Enfin, nous appliquons la méthodologie de dimensionnement par optimisation à une architecture série/parallèle, intégrant deux machines électriques. / Road transportation has a huge impact on the environment. Hybrid electric vehicles (HEV) are an interesting alternative, especially for urban uses. However, HEV are complex systems to design because of the strong interaction between the component sizing, the energy management and the driving cycle.V. Reinbold previously developed a sizing methodology for HEV. The components and the energy management are simultaneously optimized to reduce the fuel consumption of the vehicle over a driving cycle. A specific electromagnetic model is used during the optimization process to describe accurately the electrical machine.As a continuation, we introduce firstly the possibility to deal with discrete variables such as the pole number of the electrical machine. Then, we develop a thermal model of the machine considering the convection exchanges around the end-windings. This analytical lumped parameter thermal network is used during the optimization process after being validated thanks to a finite element model. Uncertainty and sensitivity analysis are used to check the influence of some of the thermal parameters. Finally, the sizing methodology is applied to a series/parallel HEV including two electrical machines.
214

Metodologia para projeto, construção e ensaios em máquina síncrona de imã permanente - MSIP / Methodology for design, construction and testing on permanent magnet synchronous machine - PMSM

Teixeira, Fernando Henrique Pisani 18 August 2006 (has links)
A grande aplicação residencial de motores de indução monofásicos é em sistemas de refrigeração doméstica/comercial. O desenvolvimento de motores mais eficientes, associado ao controle de velocidade, fez com que, dentro os mais diversos tipos de motores, o motor síncrono de imã permanente tornasse objeto para a criação de uma metodologia de projeto, construção e realização de ensaios. Assim, para adequar o projeto do motor MSIP para substituição do motor de indução monofásico, foram feitos estudos de como aproveitar as laminações já existentes, através de definições das características básicas do estator e do rotor. O imã permanente a ser utilizado foi definido principalmente em função do custo do material e de suas propriedades magnéticas estarem adequadas à necessidade do projeto. O projeto magnético foi feito para maximizar o fluxo nos dentes, considerando as características construtivas e a curva de trabalho dos imãs. O projeto elétrico, a partir de um circuito equivalente do motor, permitiu explicar as relações de torque, corrente e tensão do motor MSIP, bem como a definição das bobinas do motor, quanto ao espaçamento destas entre as ranhuras, o cálculo do número de espiras e o diâmetro dos fios em função da área permitida pela ranhura da lamina do estator. Com as informações obtidas após o cálculo do motor MSIP, passou-se a construção de um protótipo constituído pelo estator, rotor e um sistema de suporte que permitisse o levantamento dos parâmetros do motor. Os parâmetros necessários foram definidos levando-se em consideração a necessidade para o projetista do conversor elétrico, sendo estes dados utilizados em simulações computacionais para a determinação do projeto do acionador. Com isto, os ensaios do motor MSIP permitiram o levantamento dos seguintes parâmetros: resistência, indutância, curvas de tensão de fase e linha da eletromotriz por velocidade em diversas rotações, momento de inércia e atrito viscoso, concluindo assim a proposta deste trabalho, e finalizando a metodologia para o motor MSIP. / A major residential application of single-phase induction motors is in domestic refrigeration. The development of more efficient motors, associated with speed control, has made that, among the most diverse types of electrical motors, the permanent magnet synchronous machine becomes an object of study for a design, construction and testing methodology. Therefore, to suit the PMSM design to replace the single phase induction motor, studies were made on how to take advantage of existing laminations, through definitions of the basic characteristics of the stator and rotor. The permanent magnet used was defined mainly as a function of the cost of the material and its magnetic properties since they suit the design requirements. PMSM magnetic design was made to maximize the magnetic flow in the slots considering the constructive characteristics and the magnet curve. The electric design, starting from a motor equivalent circuit, allowed to explain torque, current and voltage of the PMSM motor, as well as the definition of the motor windings regarding their filling in the slots, the calculation of coil number and the wire diameter as a function of the area allowed by the stator lamination slot. With the information obtained after the PMSM motor calculation, a prototype construction was initiated consisting of the stator, rotor and a support system to allow determining the motor parameters. The required parameters were defined taking into account the need the designer had of an electronic drive had. This data was used in computational simulations to determine the electronic driver design. After this, the motor testing allowed to identify the parameters, namely: winding resistance and inductance, various speed curves versus phase to phase and line voltage for back emf´s, moment of inertia and viscous friction, thus completing this work proposal, finalizing the project methodology for PMSM motor.
215

Controle preditivo Finite Control-Set aplicado à máquina síncrona com ímã permanente no rotor / Finite Control-Set predictive control of permanent magnet synchronous machine

Castro, Allan Gregori de 20 February 2017 (has links)
Ondulações de torque devido à comutação de fases é apontada como a principal desvantagem do método de controle 6 pulsos convencional do motor síncrono de ímã permanente no rotor com força contra-eletromotriz trapezoidal. Para reduzir essas ondulações, diferentes estratégias de controle vetorial dessa máquina são apresentadas na literatura. Nesse trabalho é proposto e analisado o controle vetorial dessa máquina utilizando uma malha de controle de corrente baseada no Finite Control-Set Model-based Predictive Control (FCS-MPC). Como resultado, a estrutura de controle vetorial proposta é capaz de reduzir as ondulações de torque de comutação e também aquelas provenientes de imperfeições da força contraeletromotriz trapezoidal. Esse resultado é atingido sem a alteração da estrutura do conversor, adição de circuito ou alteração na tensão de barramento. Em termos de desempenho dinâmico, são demonstradas a rápida dinâmica de torque sem necessidade de sintonia ou projeto de ganhos de controlador e dinâmica desacoplada das variáveis de controle sem necessidade de cálculo de termos de desacoplamento. Esses resultados apontam vantagens sobre recentes propostas na literatura baseada em controladores lineares. Também é implementado uma estratégia de melhoria de desempenho do FCS-MPC baseado na inclusão do conceito de ciclo de trabalho. Essa abordagem permite reduzir significativamente, em baixa velocidade, a banda de ondulação da corrente de estator e torque da máquina, demonstrando uma melhoria em relação ao FCS-MPC sem ciclo de trabalho. / Torque ripples due to phase commutation are pointed to the main drawback of 120 degree 6 step control of synchronous motor with trapezoidal back electromotive force (back EMF). To reduce these ondulations, different vector control strategies are presented in the literature. This study proposes and analyzes the application of the Finite Control-Set Model-based Predictive Control in the current loop of vector control strategy of permanent magnet synchronous motor with trapezoidal back EMF. As a result, the control structure reduces the torque ripple comming from phase commutation and back EMF shape imperfections. This result is achieved without changing the converter topology, the DC link voltage or including aditional circuit. Concerning to dynamic response, the proposed control strategy offers fast torque dynamics without gain tunning needed and decoupled dynamic of variable control. Furthermore, it is implemented an improvement approach to FCS-MPC based on duty-cycle concept. This strategy reduces significantly the torque ripple in low speed range, demonstrating an advance over conventional FCS-MPC.
216

Wave Energy Conversion : Linear Synchronous Permanent Magnet Generator

Danielsson, Oskar January 2006 (has links)
<p>This thesis studies the electric aspects of a linear synchronous permanent magnet generator. The generator is designed for use in a wave energy converter, which determines the fundamental requirements of the generator. The electromagnetic properties of the generator are investigated with a finite element based simulation tool. These simulations formed the base of the design and construction of a laboratory prototype. Several experiments where conducted on the prototype generator. The results verify at large the simulation tool. However, a difference between the measured and simulated air gap flux was discovered. This was attributed to the longitudinal ends of the generator, which are ignored in the simulation tool. Experiences from the construction, and further finite element studies, led to a significant change in the support structure of the first offshore prototype generator. A complete wave energy converter was constructed and launched, the 13th of March, on the west coast of Sweden. A study of the load resistance impact on the power absorption has been carried out. An optimal load interval, with regard to power absorption, has been identified. Furthermore, the generator has proofed to withstand short term overload several times larger than the nominal load. Finally, the longitudinal ends’ influence on the flux distribution was investigated with an analytical model, as well as finite element simulations. A possible problem with large induction of eddy currents in the actuator back steel was identified.</p><p>This work is a part of a larger project, which aims do develop a viable wave energy conversion system.</p>
217

On design and analysis of synchronous permanent magnet machines for field-weakening operation in hybrid electric vehicles

Magnussen, Freddy January 2004 (has links)
A regular vehicle of today is equipped with an internal combustion engine that runs on either gasoline or diesel, which are fossil fuels from oil reserves that are millions of years old. In all types of combustion processes carbon dioxide and several other emissions are produced. There are none known technologies of today that can reduce the emissions of carbon dioxide from combustion, but the amount that is produced is mainly dependent on the fuel that is used. Combustion of fossil fuels increases the contamination of carbon dioxide in the atmosphere and diminishes the oil resources. The results are global warming and empty oil reserves within a few decades with the current production tempo, in addition to many other pollution effects that are harmful to the environment. A transition towards a society based on sustainable transportation is therefore urgent. The hydrogen fuel cell powered car with an electric propulsion system has the potential to be the car of the future that possesses the required characteristics of no harmful tailpipe emissions. There are some obstacles in the way for an early commercialisation, including the expensive catalysts used today and the lack of an infrastructure based on hydrogen, though. The hybrid electric vehicle, with both a conventional as well as an electric drivetrain, is a natural candidate for making the transition from the conventional car towards the car of the future. This thesis is focused on the design and analysis of permanent magnet machines for a novel hybrid electric vehicle drive system called the Four Quadrant Transducer. A number of electrical machine aspects are identified, including cores of soft magnetic composites, fractional pitch concentrated windings, core segmentation, novel machine topologies and cost effective production methods. The main objective is to analyse and judge the many unconventional machine aspects of which some may have the potential to improve the performance and reduce the cost of permanent magnet machines. Another objective is to study the effects of the use of fossil fuels and describe them with a new perspective and thereby make one small contribution to the debate about energy issues. Much focus has been spent on the theory of concentrated windings for permanent magnet machines. The potential parasitic effects and methods to improve the torque performance have been described. Other topics that have been given a high priority are material and power loss studies. An important contribution to the understanding of iron losses during field-weakening operation has been presented. A comprehensive use of finite element modeling has been done in the analysis combined with measurements on several laboratory prototypes. The Four Quadrant Transducer drivetrain and its two electrical machines intended for a midsized passenger car has been studied. The gearbox can be of a simple single stage type, which reduces the mechanical complexity and makes the traction performance of the vehicle smooth, without gear changes and drops in power. Simulations on a complete hybrid system show that fuel savings of more than 40% compared to a conventional vehicle can be achieved at citytraffic driving. The savings are modest at highway driving, since the engine is required to operate at high power during such conditions, and the support from the electrical system is negligible. The laboratory prototypes have shown that it is possible to manufacture high performance electrical machines with high material utilization and potential for automated production. The described concepts offer cost effective solutions for future drive systems in automotive and industrial applications. A number of weaknesses with the presented constructions have also been characterized, which should serve as guidelines for creating more optimized machines.
218

Low Speed Energy Conversion from Marine Currents

Thomas, Karin January 2007 (has links)
The focus of this thesis is research on the performance of very low speed direct drive permanent magnet generators for energy conversion from marine and tidal currents. Various aspects involved in the design of these generators and their electromagnetic modelling using the finite element simulations are presented. For a detailed study, a 5 kW prototype generator has been designed and constructed based on finite element based simulations. Several experiments were conducted on the prototype generator. The experimental results were compared with the corresponding case simulations on the designed generator. The differences between the results predicted by the simulations and those predicted by the measurements were less than 10%. The part and overload performance of the generator has been investigated and it is found from both simulations and measurements that the generator is capable to efficiently operate at varying speeds. The tests on the experimental generator were made for speeds between 2 and 16 rpm and for load variations of 0.5 to 2 per unit. In this thesis it is shown that it is possible to design a very low speed direct drive generator for more or less any given marine current site and this is beneficial for projects aiming to develop a technical and economical viable marine current energy conversion system.
219

Thermal Analysis and Management of High-Performance Electrical Machines

Nategh, Shafigh January 2013 (has links)
This thesis deals with thermal management aspects of electric machinery used in high-performance  applications  with  particular  focus put  on electric machines designed for hybrid electric vehicle applications. In the first part of this thesis,  new thermal models of liquid (water and oil) cooled electric machines are proposed.  The proposed thermal models are based on a combination of lumped parameter (LP)  and numerical methods. As  a first  case study,  a permanent-magnet  assisted  synchronous reluctance machine (PMaSRM) equipped with a housing water jacket is considered.  Particular focus is put on the stator winding and a thermal model is proposed that divides the stator slot into a number of elliptical copper and impregna- tion layers.  Additionally, an analysis, using results from a proposed simplified thermal finite element (FE)  model representing only a single slot of the sta- tor and its corresponding end winding, is presented in which the number of layers and the proper connection between the parts of the LP thermal model representing the end winding and the active part of winding are determined. The approach is attractive due to its simplicity  and the fact  that it closely models the actual temperature distribution for common slot geometries.  An oil-cooled induction machine where the oil is in direct contact with the stator laminations  is also considered.  Here, a multi-segment structure is proposed that  divides  the  stator,  winding and cooling  system  into  a number  of an- gular  segments.   Thereby,  the  circumferential  temperature  variation  due to the  nonuniform distribution  of the  coolant  in the  cooling  channels  can be predicted. In the  second part  of this  thesis,  the  thermal  impact  of using  different winding impregnation  and steel  lamination  materials  is  studied.   Conven- tional varnish, epoxy and a silicone based thermally conductive impregnation material are investigated and the resulting temperature distributions in three small induction machines are compared. The thermal impact of using different steel lamination materials is investigated by simulations using the developed thermal  model  of the water  cooled  PMaSRM. The  differences  in alloy con- tents and steel lamination thickness are studied separately and a comparison between the produced iron losses and the resulting hot-spot temperatures is presented. Finally, FE-based approaches  for  estimating  the  induced  magnet  eddycurrent losses in the rotor of the considered PMaSRM are reviewed and compared in the  form  of a case  study  based on simulations.   A  simplified three-dimensional  FE model  and an analytical  model,  both  combined  with time-domain 2D FE analysis, are shown to predict the induced eddy current losses with a relatively good accuracy compared to a complete 3D FE based model.  Hence, the two simplified approaches are promising which motivates a possible future experimental verification. / <p>QC 20130528</p>
220

Wave Energy Conversion : Linear Synchronous Permanent Magnet Generator

Danielsson, Oskar January 2006 (has links)
This thesis studies the electric aspects of a linear synchronous permanent magnet generator. The generator is designed for use in a wave energy converter, which determines the fundamental requirements of the generator. The electromagnetic properties of the generator are investigated with a finite element based simulation tool. These simulations formed the base of the design and construction of a laboratory prototype. Several experiments where conducted on the prototype generator. The results verify at large the simulation tool. However, a difference between the measured and simulated air gap flux was discovered. This was attributed to the longitudinal ends of the generator, which are ignored in the simulation tool. Experiences from the construction, and further finite element studies, led to a significant change in the support structure of the first offshore prototype generator. A complete wave energy converter was constructed and launched, the 13th of March, on the west coast of Sweden. A study of the load resistance impact on the power absorption has been carried out. An optimal load interval, with regard to power absorption, has been identified. Furthermore, the generator has proofed to withstand short term overload several times larger than the nominal load. Finally, the longitudinal ends’ influence on the flux distribution was investigated with an analytical model, as well as finite element simulations. A possible problem with large induction of eddy currents in the actuator back steel was identified. This work is a part of a larger project, which aims do develop a viable wave energy conversion system.

Page generated in 0.0997 seconds