• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 12
  • 10
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerische Simulation der geologischen Entwicklungsgeschichte des permokarbonen Saar-Nahe-Beckens

Hertle, Michael. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2004--Aachen.
2

The Geology of the southern Warmbad Basin Margin - Tephrostratigraphy, Age, Fossil Record and Sedimentary Environment of Carboniferous-Permian Glacigenic Deposits of the Dwyka Group, Zwartbas, southern Namibia

Geiger, Markus January 2000 (has links) (PDF)
At Zwartbas, about 10 km west of Vioolsdrif, southern Namibia, the Dwyka succession is composed of tillites and distal fossiliferous dropstone-bearing glacio-marine shales. The completely exposed Dwyka succession is interbedded with thin bentonites, altered distal pyroclastic deposits, which were derived from the magmatic arc at the southern rim of Gondwana. Dropstone-bearing and dropstonefree sequences intercalate with four diamictites, of which the two lowest were certainly recognised as tillites. Four events of deglaciation were proven at Zwartbas and thus consist with correlative deposits in southern Africa. Numerous fossilised fishes, trace fossils, and plant fragments appear frequently within the lower half of the Dwyka succession whereas trace fossils were principally found in the complete succession. Although the environmental determination is quite problematic, the fossil assemblage rather implies proximal, shallow water conditions with temporary restricted oxygenation. The hinterland was covered with considerable vegetation, which points to a moderate climate. Water salinity determinations based on shale geochemistry rectify contrary palaeontological results and point to rather brackish or non-marine conditions in comparison to present-day salinites. Geochemical analyses of the bentonites relate the pyroclastic deposits with acid to intermediate source magmas, as they are known from the magmatic arc in present-day Patagonia. Tectono-magmatic comparisons furthermore emphasise a syn-collision or volcanic-arc situation of the magma source. However, significant cyclicity in the production of the pyroclastic deposits was not observed. Radiometric age determinations of two tuff beds clearly date the onset of glacial activity into the Late Carboniferous.
3

An Explanation of the Geological Map 1:10000 of the Namibian borderland along the Orange River at Zwartbas - Warmbad District - Karas Region - Namibia

Geiger, Markus January 1999 (has links) (PDF)
The locality of Zwartbas is situated at the border of Namibia and South Africa about 15 km west of Noordoewer. The mapped area is confined by the Tandjieskoppe Mountains in the north and the Orange River in the south. Outcropping rocks are predominantly sediments of the Nama Group and of the Karoo Supergroup. During the compilation of this paper doubts arose about the correct classification of the Nama rocks as it is found in literature. Since no certain clues were found to revise the classification of the Nama rocks, the original classification remains still valid. Thus the Kuibis and Schwarzrand Subgroup constitute the Nama succession and date it to Vendian age. A glacial unconformity represents a hiatus for about 260 Ma. This is covered by sediments of the Karoo Supergroup. Late Carboniferous and early Permian glacial deposits of diamictitic shale of the Dwyka and shales of the Ecca Group overlie the unconformity. The shales of the Dwyka Group contain fossiliferous units and volcanic ash-layers. A sill of the Jurassic Tandjiesberg Dolerite Complex (also Karoo Supergroup) intruded rocks at the Dwyka-Ecca-boundary. Finally fluvial and aeolian deposits and calcretes of the Cretaceous to Tertiary Kalahari Group and recent depositionary events cover the older rocks occasionally. / Die Lokalität Zwartbas liegt an der namibisch-südafrikanischen Grenze, etwa 15 km westlich von Noordoewer. Das Kartiergebiet wird durch die Tandjiesberge im Norden und den Oranje Fluß im Süden begrenzt. Die anstehenden Gesteine bestehen hauptsächlich aus Sedimenten der Nama Gruppe und der Karoo Supergruppe. Während der Erarbeitung dieser Abhandlung entstanden Zweifel an der Klassifikation der Nama Gesteine, so wie sie in der Literatur zu finden ist. Da keine sicheren Hinweise zur Revision der Klassifikation der Nama Gesteine gefunden wurden, bleibt die ursprünglich Klassifikation jedoch gültig. Die Kuibis und Schwarzrand Untergruppe bilden also die Nama Abfolge und datieren sie ins Vendian. Eine glaziale Diskontinuität repräsentiert einen Hiatus von etwa 260 Mio Jahren. Sie wird überlagert von Sedimenten der Karoo Supergruppe. Spät-karbone und früh-permische glaziale Ablagerungen von diamiktitischen Tonsteinen der Dwyka Gruppe und Tonsteine der Ecca Gruppe liegen über dieser Diskontinuität. Die Sedimente der Dwyka Gruppe sind fossilführend und enthalten Tufflagen. Ein Sill des jurassischen Tandjiesberg Dolerit Komplex (auch Karoo Supergruppe) intrudierte in die Gesteine an der Dwyka-Ecca Grenze. Schließlich bedecken lokal fluviatile und äolische Ablagerungen und Kalkkrusten der kretazischen und tertiären Kalahari Gruppe und jüngerer Ablagerungsereignisse die älteren Gesteine.
4

Quantitative petrographic investigations of porphyritic rhyolitic laccoliths of the Halle Volcanic Complex, Germany

Mock, Alexander 13 July 2009 (has links) (PDF)
Felsic phenocrysts of the laccoliths have straight size distributions (characteristic lengths 3.4 to 36 mm) and R-values from 1.34 to 0.78 (randomly distributed, no touching frameworks). Laccoliths have crystallinities from 10 to 30%. Textural coarsening possibly played a role in crystallization history. Serial sectioning reveals true shapes, sizes and three dimensional size distributions, non-touching frameworks, aspect ratios from 1.7:1.5:1 to 8.7:1.9:1 and a minimum sampling size of ~200 crystals. Different textural varieties develop late in system evolution and differed in density (~1%), viscosity and, thus, level of emplacement. Phenocryst populations formed on a timescale between 10 days and 2000 years, growth during emplacement is negligible. Models for filling and cooling of laccoliths suggest timescales from few 100 to ~20000 years. Contacts of laccoliths appear brecciated and sometimes show intercalation of magma and host sediment under ductile deformation. Dimensions of laccoliths plot in the field for such intrusions on a logarithmic width vs. thickness plot. Laccoliths intruded as distinct magma batches. More laccoliths than recognised before can be distinguished. Comparing felsic laccolith complexes in Late Palaeozoic transtensional basins, gives rise to new types of laccolith complexes termed Donnersberg and Halle type.
5

Quantitative petrographic investigations of porphyritic rhyolitic laccoliths of the Halle Volcanic Complex, Germany

Mock, Alexander 02 July 2004 (has links)
Felsic phenocrysts of the laccoliths have straight size distributions (characteristic lengths 3.4 to 36 mm) and R-values from 1.34 to 0.78 (randomly distributed, no touching frameworks). Laccoliths have crystallinities from 10 to 30%. Textural coarsening possibly played a role in crystallization history. Serial sectioning reveals true shapes, sizes and three dimensional size distributions, non-touching frameworks, aspect ratios from 1.7:1.5:1 to 8.7:1.9:1 and a minimum sampling size of ~200 crystals. Different textural varieties develop late in system evolution and differed in density (~1%), viscosity and, thus, level of emplacement. Phenocryst populations formed on a timescale between 10 days and 2000 years, growth during emplacement is negligible. Models for filling and cooling of laccoliths suggest timescales from few 100 to ~20000 years. Contacts of laccoliths appear brecciated and sometimes show intercalation of magma and host sediment under ductile deformation. Dimensions of laccoliths plot in the field for such intrusions on a logarithmic width vs. thickness plot. Laccoliths intruded as distinct magma batches. More laccoliths than recognised before can be distinguished. Comparing felsic laccolith complexes in Late Palaeozoic transtensional basins, gives rise to new types of laccolith complexes termed Donnersberg and Halle type.
6

The basal Sphenacodontia – systematic revision and evolutionary implications

Spindler, Frederik 09 July 2015 (has links) (PDF)
The presented study comprises a complete morphological and phylotaxonomic revision of basal Sphenacodontia, designated as the paraphyletic ‘haptodontines’. Ianthodon from the Kasimovian is known from newly identified elements, including most of the skull and particular postcrania. This species is determined as the best model for the initial morphology of the Sphenacomorpha (Edaphosauridae and Sphenacodontia). Remarkably older sphenacodontian remains from the Moscovian indicate a derived, though fragmentarily known form, possibly basal Sphenacodontoidea. The genus Haptodus is conclusively revised, including the revalidation of the type species H. baylei from the Artinskian. Haptodus grandis is renamed as Hypselohaptodus, gen. nov. “Haptodus” garnettensis is not monophyletic with Haptodus, moreover the material assigned to it yielded a greater diversity. Thus, its renaming includes Eohaptodus garnettensis, gen. nov., Tenuacaptor reiszi, gen. et spec. nov., and Kenomagnathus scotti, gen. et spec. nov. Along with Ianthodon and the basal edaphosaurid Ianthasaurus, these taxa from a single assemblage are differentiated by dentition and skull proportions, providing a case study of annidation. Since Ianthodon can be excluded from Sphenacomorpha, the larger, stem-based taxon Haptodontiformes is introduced. More derived ‘haptodontines’ apparently form another radiation, named as Pantherapsida. This new taxon includes Cutleria, Tetraceratops, Hypselohaptodus, the Palaeohatteriidae (Pantelosaurus and Palaeohatteria), and the Sphenacodontoidea. The ‘pelycosaur’-therapsid transition is affirmed as a long-term development. An integrative evolutionary hypothesis of basal sphenacodontians is provided, within which the ghost lineage of Early Permian therapsids can be explained by biome shift.
7

Svrchnopaleozoičtí obojživelníci boskovické brázdy v sbírkovém materiálu CHlupáčova muzea / Upperpaleozoic amphibians of Boskovice Graben in collection of the Chlupáč museum

Krejčí, Martina January 2016 (has links)
The history of research on the Late Paleozoic amphibians at Faculty of science of Charles University in Prague coincides with the 50th of the last century, when it was acquired rich collection material from field collection prof. Špinar. This is connected with the necessity of cataloging and processing of this material. The catalog alone contains large amounts of material, 3,237 pieces of items that will be the basis for subsequent research directions in the fields of morphology, anatomy, taxonomy, biomechanic and more. The most numerous species in collections is discosauriscus austriacus.
8

The basal Sphenacodontia – systematic revision and evolutionary implications

Spindler, Frederik 18 June 2015 (has links)
The presented study comprises a complete morphological and phylotaxonomic revision of basal Sphenacodontia, designated as the paraphyletic ‘haptodontines’. Ianthodon from the Kasimovian is known from newly identified elements, including most of the skull and particular postcrania. This species is determined as the best model for the initial morphology of the Sphenacomorpha (Edaphosauridae and Sphenacodontia). Remarkably older sphenacodontian remains from the Moscovian indicate a derived, though fragmentarily known form, possibly basal Sphenacodontoidea. The genus Haptodus is conclusively revised, including the revalidation of the type species H. baylei from the Artinskian. Haptodus grandis is renamed as Hypselohaptodus, gen. nov. “Haptodus” garnettensis is not monophyletic with Haptodus, moreover the material assigned to it yielded a greater diversity. Thus, its renaming includes Eohaptodus garnettensis, gen. nov., Tenuacaptor reiszi, gen. et spec. nov., and Kenomagnathus scotti, gen. et spec. nov. Along with Ianthodon and the basal edaphosaurid Ianthasaurus, these taxa from a single assemblage are differentiated by dentition and skull proportions, providing a case study of annidation. Since Ianthodon can be excluded from Sphenacomorpha, the larger, stem-based taxon Haptodontiformes is introduced. More derived ‘haptodontines’ apparently form another radiation, named as Pantherapsida. This new taxon includes Cutleria, Tetraceratops, Hypselohaptodus, the Palaeohatteriidae (Pantelosaurus and Palaeohatteria), and the Sphenacodontoidea. The ‘pelycosaur’-therapsid transition is affirmed as a long-term development. An integrative evolutionary hypothesis of basal sphenacodontians is provided, within which the ghost lineage of Early Permian therapsids can be explained by biome shift.:Chapter 1 ‘Haptodontines’ re-examined – An Introduction Chapter 2 New information on the cranial and postcranial anatomy of the early synapsid Ianthodon schultzei (Sphenacomorpha: Sphenacodontia), and its evolutionary significance Chapter 3 Reviewing the question of the oldest therapsid Chapter 4 Revision of the genus Haptodus (Synapsida: Haptodontiformes) and evolutionary implications from the Garnett fossil site Chapter 5 Morphological description and taxonomic status of Palaeohatteria and Pantelosaurus (Synapsida: Sphenacodontia) Chapter 6 Re-description of Cutleria and Tetraceratops (Synapsida, Sphenacodontia), with implications on the radiation of Sphenacodontoidea Chapter 7 Callibrachion and Datheosaurus, two historical and previously mistaken basal Caseasauria (Synapsida) from Europe Chapter 8 Synthesis and perspective
9

Ablagerungsfazies der Grobklastika der oberen Halle-Formation

Grieswald, Heike 21 June 2016 (has links) (PDF)
Die Sedimente des Halleschen Permokarbonkomplexes gaben schon immer Raum für Spekulationen. Aufgrund ihrer Dominanz an rhyolithischen Geröllen wurden sie über einen langen Zeitraum einheitlich als Postporphyrschutt ausgehalten. Vielfältig wechselnde Faziesbedingungen machten es jedoch notwendig, die Sedimente aufzugliedern. Neuere Erkenntnisse in der Erforschung des Halleschen Permokarbonkomplexes erfordern eine Überprüfung v. a. der nach KUNERT (1995) aufgestellten allgemeinen stratigraphischen Gliederung der Unterrotliegendsedimente in Halle,- Hornburg,- Sennewitz- und Brachwitz-Formation anhand einiger ausgewählter Beispiele. Der ursprüngliche Gedanke der Diplomarbeit bestand darin, eine Fazies- und eine Geröllanalyse der unterpermischen Abtragungsprodukte des Halle-Vulkanitkomplexes anzufertigen. Zur Verfügung standen zwei Kernbohrungen und zwei Aufschlüsse, sowie diverse Unterlagen zu angrenzenden Bohrungen in der Saale-Senke. Die beiden Oberflächenaufschlüsse Riveufer und Teichgrund sollten stratigraphisch aufgenommen werden, so dass eine Fazieszuordnung möglich ist. Die Bohrung Brachwitz 2/62 wurde mit dem Ziel aufgenommen, neuere Theorien über den Ablagerungszeitraum der Rotliegend-Sedimente in Bezug auf den permokarbonen Vulkanismus zu widerlegen oder zu bekräftigen. Die zweite Bohrung (Kb Lochau 7/65) wurde am Rande mit in die Diplomarbeit einbezogen, da sie das immense Spektrum der spätvulkanischen Aktivitäten im Halle Permokarbonkomplex erweitert. Ergebnis ist eine Neugliederung des Rotliegend im Halleschen Permokarbonkomplex, in der nur noch die Halle-Formation mit ihrem ausgeprägten Vulkanismus und die Hornburg-Formation, stellvertretend für alle jüngeren Abtragungsprodukte des Halle Vulkanitkomplexes, unterschieden werden. Mit einem großen Hiatus folgt anschließend die Eisleben-Formation.
10

Ablagerungsfazies der Grobklastika der oberen Halle-Formation

Grieswald, Heike 16 August 2004 (has links)
Die Sedimente des Halleschen Permokarbonkomplexes gaben schon immer Raum für Spekulationen. Aufgrund ihrer Dominanz an rhyolithischen Geröllen wurden sie über einen langen Zeitraum einheitlich als Postporphyrschutt ausgehalten. Vielfältig wechselnde Faziesbedingungen machten es jedoch notwendig, die Sedimente aufzugliedern. Neuere Erkenntnisse in der Erforschung des Halleschen Permokarbonkomplexes erfordern eine Überprüfung v. a. der nach KUNERT (1995) aufgestellten allgemeinen stratigraphischen Gliederung der Unterrotliegendsedimente in Halle,- Hornburg,- Sennewitz- und Brachwitz-Formation anhand einiger ausgewählter Beispiele. Der ursprüngliche Gedanke der Diplomarbeit bestand darin, eine Fazies- und eine Geröllanalyse der unterpermischen Abtragungsprodukte des Halle-Vulkanitkomplexes anzufertigen. Zur Verfügung standen zwei Kernbohrungen und zwei Aufschlüsse, sowie diverse Unterlagen zu angrenzenden Bohrungen in der Saale-Senke. Die beiden Oberflächenaufschlüsse Riveufer und Teichgrund sollten stratigraphisch aufgenommen werden, so dass eine Fazieszuordnung möglich ist. Die Bohrung Brachwitz 2/62 wurde mit dem Ziel aufgenommen, neuere Theorien über den Ablagerungszeitraum der Rotliegend-Sedimente in Bezug auf den permokarbonen Vulkanismus zu widerlegen oder zu bekräftigen. Die zweite Bohrung (Kb Lochau 7/65) wurde am Rande mit in die Diplomarbeit einbezogen, da sie das immense Spektrum der spätvulkanischen Aktivitäten im Halle Permokarbonkomplex erweitert. Ergebnis ist eine Neugliederung des Rotliegend im Halleschen Permokarbonkomplex, in der nur noch die Halle-Formation mit ihrem ausgeprägten Vulkanismus und die Hornburg-Formation, stellvertretend für alle jüngeren Abtragungsprodukte des Halle Vulkanitkomplexes, unterschieden werden. Mit einem großen Hiatus folgt anschließend die Eisleben-Formation.:Inhalt Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis 1. Einleitender Teil 1 1.1 Einleitung 1 1.2 Aufgabenstellung und Problematik 1 1.3 Geographischer Überblick über die Bohrungen und Aufschlüsse 2 2. Regionalgeologischer Teil 4 2.1 Aufbau des Halle Vulkanitkomplexes 4 2.2 Beckenentwicklung des Permokarbons im Bereich des Halle- Vulkanitkomplexes 5 2.3 Historischer Rückblick über die Einstufung der Rotliegend-Formationen im Halle Vulkanitkomplex 10 2.4 Neueste Entwicklungen in der Erforschung des Saale-Beckens 15 2.4.1 Die Ablagerungen der Halle-Formation 15 2.4.2 Die Ablagerungen der Sennewitz-Formation 16 2.4.3 Die Ablagerungen der Hornburg-Formation 17 2.4.4 Die Ablagerungen der Brachwitz-Formation 19 2.4.5 Die Ablagerungen der Eisleben-Formation 20 2.4.6 Aktuelle Stratigraphische Gliederung 22 2.5 Die späte Phase des Halle Vulkanitkomplexes und ihr Bezug zur Diplomarbeit 23 3 Arbeitsmethodik 24 3.1 Aufnahme der Bohrungen Brachwitz 2/62 und Lochau 7/65 24 3.2 Aufnahme des Aufschlusses am Teichgrund bei Döblitz 26 3.3 Aufnahme des Aufschlusses am Riveufer im Stadtgebiet von Halle 26 4. Vulkanische und sedimentäre grobklastische Transport- und Ablagerungssysteme 27 4.1 Vulkanische Massentransporte 27 4.1.1 Pyroklastische Ablagerungen 27 4.1.1.1 Pyroklastische Fallablagerungen 28 (1) Aschefallablagerungen 28 (2) Bimsführende Fallablagerungen 29 (3) Scoriaführende Fallablagerungen 29 4.1.1.2 Pyroklastische Stromablagerungen 29 (1) Bimsführende pyroklastische Stromablagerungen oder Ignimbrite 29 (2) Block- und Aschestromablagerungen 31 (3) Scoriaführende pyroklastische Stromablagerungen 32 4.1.1.3 Pyroklastische Surge-Ablagerungen 32 (1) Surgeablagerungen durch Aschewolken 32 (2) Ablagerungen am Boden der pyroklastischen Surge 33 (3) Ablagerungen an der Basis der pyroklastischen Surge 33 4.1.2 Explosive vulkanische Eruptionen 33 (1) Hawaiianische Eruptionen 34 (2) Plinianische Eruptionen 34 (3) Strombolianische Eruptionen 35 (4) Vulkanianische und Surtseyanische Eruptionen 35 4.1.3 Produkte phreatomagmatischer Eruptionen 36 (1) Maare 37 (2) Tuffkegel und Tuffringe 37 4.1.4 Tephraablagerungen 38 4.2 Sedimentäre Massentransporte 39 4.2.1 Alluviale Fächer 40 4.2.2 Schichtfluten 42 4.2.3 Flußsyteme 42 4.2.4 Überflutungsebenen 43 4.2.5 Deltas und Ästuare 44 5. Lithologien und Faziestypen 45 6. Aufschlüsse und Bohrungen 45 6.1 Aufschlußkomplex am Riveufer im Stadtteil Giebichenstein in Halle 48 6.1.1 Allgemeine Aussagen 48 6.1.2 Das Faziesmodell eines verflochtenen Flußsystems 48 (1) Ausbildung von Rinnen 48 (2) Einfallen der Rinnen 50 (3) Prallhänge 50 (4) Seitenanschnitte an beiden Enden des Aufschlusses 51 6.1.3 Ein tuffgefülltes Spaltensystem als syn- bis postsedimentäres Ereignis 52 6.1.4 Interpretation 53 6.2 Aufschluß am Teichgrund bei Döblitz 55 6.2.1 Allgemeine Aussagen 55 6.2.2 Sedimentäre Lithofaziestypen und -assoziationen 56 6.2.3 Dokumentation der einzelnen Aufschlüsse 56 6.2.3.1 Aufschluß T1 56 (1) Detaildarstellung Aufschluß am Teichgrund T1-1 56 6.2.3.2 Aufschluß T2 59 6.2.3.3 Aufschluß T3 59 6.2.4 Fazielle Diskussion 59 6.3 Kernbohrung Brachwitz BrwSk 2/62 südöstlich der Ortschaft Friedrichsschwerz 61 6.3.1 Allgemeine Informationen 61 6.3.2 Erläuterungen zu den Lithofaziestypen 61 (1) SFT-B1 Konglomerat der Eislebenformation 61 (2) SFT-T1 Sedimentäre Brekzie 61 (3) SFT-T4 Mittel- bis Grobsandstein 62 (4) SFT-B2 Schluffstein 62 (5) VFT-T0 Rhyolith, brekziös/ VFT-T1 Porphyrbrekzie, monomikt 63 (6) VFT-B12 Porphyrbrekzie mit Obsidianmatrix 64 (7) VFT-B2 Porphyrbrekzien, oligomikt und polymikt 64 (8) VFT-B3 Mittelsand, vulkanogen 65 (9) VFT-B5 Schluffstein, brekziiert 66 6.3.3 Auswertung 66 6.4 Kernbohrung Lochau 7/65 südöstlich Halle 68 6.4.1 Allgemeines 68 6.4.2 Erläuterungen zu den Vulkanischen Faziestypen 68 (1) VFT-L1 Aschentuff 68 (2) VFT-L2 Surges 69 (3) VFT-L3 Surge oder Explosionsbrekzie 70 (4) VFT-L4 Explosionsbrekzie mit Tuffzwickelfüllung 71 (5) Tuff mit einzelnen Ballistischen Bomben 72 6.4.4 Beispiel Ha-Lo7/17 73 6.4.5 Diskussion 74 7. Zusammenfassung und Ausblick 76 8. Literatur- und Quellenverzeichnis 78 9. Anhang Anlage 1: Allgemeines Anlage 2: Teichgrund bei Döblitz Anlage 3: Riveufer im Stadtzentrum von Halle (Saale) Anlage 4: Kb Brachwitz 2/62 Anlage 5: Kb Lochau 7/65

Page generated in 0.0437 seconds