Spelling suggestions: "subject:"petits ARN none codant"" "subject:"petits ARN none codage""
1 |
De l'œuf à l'adulte : étude moléculaire et fonctionnelle de la répression des éléments transposables par les piARN au cours du développement chez drosophila melanogaster / From egg to adult : molecular and functional study of piRNA-mediated repression during germline development in drosophila melanogasterMarie, Pauline 20 September 2016 (has links)
Chez les métazoaires, la mobilisation des éléments transposables est régulée par de petits ARN non codants appelés piARN pour "PIWI interacting RNA". Cette répression est très étudiée dans la lignée germinale adulte où elle est particulièrement efficace. Néanmoins, la mobilisation de ces éléments doit être régulée tout au long du développement de la lignée germinale, qui transmet l’information génétique à travers les générations. Durant ma thèse, j’ai utilisé le modèle D. melanogaster pour étudier la répression des éléments transposables au cours du développement de la lignée germinale femelle. J’ai ainsi pu montrer qu’une répression fonctionnelle par les piARN existe dès la fin de l’embryogenèse et que les gènes liés à la régulation chez l'adulte sont également nécessaires pour la répression au cours du développement. L’analyse de données de séquençage haut débit m’a permis de mettre en évidence la production de novo de piARN fonctionnels dans les gonades en formation. De plus, comme dans les ovaires adultes, j'ai pu remarquer une répression incomplète, ressemblant à la variégation, à tous les stades du développement. Des expériences de lignage cellulaire suggèrent fortement qu'une mémoire épigénétique précoce est initiée dans les cellules germinales embryonnaires et maintenue jusqu'au stade adulte. L'implication de l'Heterochromatin Protein 1a (HP1a) dans la production des piARN télomériques montrée par séquençage des piARN pourrait expliquer ce phénomène . Les données présentées ici montrent que piARN et leurs partenaires protéiques sont les composants d'un système de répression épigénétique continu tout au long de la vie des cellules germinales. / In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous investigations in Drosophila have enlightened the mechanism of this repression in the adult germline. However, very little is known about piRNA-mediated repression during germline development. Nevertheless, to maintain the integrity of the genome, repression should occur throughout the lifespan of germ cells. During my PhD, I show that piRNA-mediated repression is active in the female germline, from late embryonic to pupal primordial germ cells, and that genes related to the adult piRNA pathway are required for repression during development. rhino-dependent piRNAs, exhibiting the molecular signature of the piRNA pathway "ping-pong" amplification step, are detected in larval gonads, arguing for de novo biogenesis of functional piRNAs during development. I also show that production of telomeric piRNAs depends on Heterochromatin Protein 1a (HP1a). Furthermore, as in adult ovaries, I observe an incomplete, bimodal and stochastic repression resembling variegation at all developmental stages. Clonal analyzes of this incomplete silencing strongly suggest that a cellular memory of an early repression decision is initiated in embryonic germ cells and further maintained until the adult stage. Taken together, the data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development.
|
2 |
Petits ARN non codants dérivant d’ARN de transfert et endoribonucléases impliquées dans leur biogenèse chez Arabidopsis thaliana / tRNA derived small non-coding RNA and endoribonuclease implicated in their biogenesis in Arabidopsis thalianaMegel, Cyrille 29 June 2016 (has links)
Parmi les petits ARN non codants, les fragments dérivant d’ARNt (tRF) ont été identifiés dans tous les embranchements de la vie. Cependant, très peu de donnée existe sur les tRF de plantes. Les populations de tRF issues de plusieurs banques de petits ARN (différents tissus, plantes soumises à des stress abiotiques, ou fractions immunoprécipitées avec la protéine ARGONAUTE1) ont été analysées. Les populations sont essentiellement constituées de tRF-5D ou des tRF-3T (clivage dans la boucle D ou T respectivement) et elles varient d’une banque à l’autre. Par une approche in silico suivie de tests de clivage in vitro, des RNases T2 d’A. thaliana (RNS) ont été identifiées comme étant capables de cliver les ARNt dans la région de l’anticodon, de la boucle D et de la boucle T. Lors de l’étude de l’expression des RNS, nous avons observé que deux d’entre elles sont fortement exprimées à un stade de maturation tardif des siliques. Ainsi, la population en tRF issue de stades de développement avancés des siliques a été analysée. Des expériences de carences en phosphate nous ont permis de démontrer l’implication d’une des RNS dans la genèse de tRF dans A. thaliana. Au final, nos données ouvrent de nouvelles perspectives quant à l’implication des RNS et des tRF comme des acteurs majeurs dans l’expression des gènes chez les plantes. / Among the small ncRNAs, tRNA-derived RNA fragments (tRFs) were identified in all domains of life. However, only few data report on plants tRFs. Short tRF were retrieved from A. thaliana small RNA libraries (various tissues, plants submitted to abiotic stress or argonaute immunoprecipitated fractions). Mainly tRF-5D or tRF-3T (cleavage in the D or T region respectively) were found, and fluctuations in the tRF population were observed.Using in vitro approaches, A. thaliana RNase T2 endoribonucleases (RNS) were shown to cleave tRNAs in the anticodon region but also in the D or T region. Through a whole study of RNS expression, we show that two RNS are also strongly expressed in the siliques at a late stage of development. Thus, we analyzed the tRF population of this particular developmental stage. Upon phosphate starvation, we demonstrate also the implication of one RNS in the production of tRFs in planta. Altogether, our data open new perspectives for RNS and tRFs as major actors of gene expression inplants.
|
3 |
Structures et Fonctions des séquences subtélomériques productrices de piRNA / Structures and functions of subtelomeric piRNA producing sequencesAsif-Laidin, Amna 04 April 2016 (has links)
Les TAS (Telomeric Associated Sequences) sont des régions sub-télomériques répétées non codantes formant un locus hétérochromatique chez Drosophila melanogaster. Il existe deux grandes familles de TAS, les TAS-R et les TAS-L possédant une structure et des propriétés différentes. Durant cette thèse, j'ai montré que les TAS dériveraient d'une séquence commune appelée TLL rapprochant ainsi les TAS-R et les TAS-L. Par ailleurs, une étude des populations de drosophiles récoltées récemment dans la nature a permis de montrer qu'il existe une pression de sélection pour la présence du TAS-X dans ces souches alors que celui peut être perdu quand les drosophiles sont maintenues dans les laboratoires pendant plusieurs générations. Le TAS-X pourrait avoir un rôle différent dans la nature. Par ailleurs, j'ai montré que les locus TAS permettent l'établissement de la répression des séquences qui s'y insèrent par la transmission de ses propriétés épigénétiques. Ce type de mécanisme pourrait être généralisé aux autres locus producteurs de piRNA du génome qui assurerait ainsi la répression d'un nouvel élément qui arriverait dans une " trappe génomique ". / TAS (Telomeric Associated Sequences) are heterochromatic subtelomeric region made of non coding repeated sequences in Drosophila melanogaster. There are two TAS families : TAS-R and TAS-L, with different structures and properties. In this study, we are showing that the TAS could have derived from a common sequence called TLL suggesting that TAS-R and TAS-L are more related than previously thought. Moreover, analysis of drosophila populations recently collected from the wild have shown that there is selection pressure for the presence of TAS-X in those lines, while this locus can be lost when flies are maintened in laboratory conditions for several generations. Thus TAS-X could have a special role in the wild. I have also shown that TAS loci transfer their epigenetic properties to the sequences that land in their loci, thereby establishing their repression. This kind of mechanism could be generalized to the other genomic piRNA producing loci that would ensure the repression of a novel element landing in a « genomic trap ».
|
4 |
Les ARN de transfert, une nouvelle source de petits ARN non-codants chez Arabidopsis thaliana / tRNAs a new source of small non-coding RNAs in Arabidopsis thalianaMorelle, Geoffrey 17 March 2015 (has links)
Au cours de ces 10 dernières années une nouvelle classe de petits ARN non-codants nommés "tRNA-derived fragments" (tRFs) a été caractérisée. Tandis que le rôle canonique des tRNA est bien connu, les raisons pour lesquels des fragments de tRNA s'accumulent dans la cellule restent inconnues. Actuellement, peu d'informations sont disponibles sur leurs biogenèses et leurs rôles biologiques, mais les preuves montrant leur importance dans la régulation de l'expression des gènes augmente régulièrement. Cependant, peu de données sont disponibles chez les plantes. A l'aide d’expérience de "deep-sequencing" et de northern blot nous avons confirmé l'existence d'une grande population en tRFs d'origine variée. A la suite de ces observations, trois questions sont établies. Tout d'abord, quelles sont les enzymes responsables de la biogenèse des tRFs. Ensuite, où les tRFs sont générés. Enfin, est-ce que les tRFs sont des sous-produits de la dégradation des tRNA ou ont-ils une fonction biologique? / During the last decade, a new class of small non-coding RNAs called tRNA-derived fragments (tRFs) has emerged. Whilst the canonic role of tRNA is well-known, the reason(s) why stable tRFs remains in the cell is unknown. Indeed, the number of tRFs has rapidly increased in various evolutionary divergent organisms. To date, only few data on their biogenesis and on their biological roles is known but their importance in the regulation of gene expression and in cell life is expanding. In plants, the existence of tRFs has also been reported but only few data are available. Using deep-sequencing on various small RNA libraries from Arabidopsis thaliana and Northern blots experiments, we confirmed the existence of a large but specific population of tRFs. Following these observations, three questions are addressed. First, what are the enzymes responsible for tRFs biogenesis, second where are tRFs generated and third, are tRFs merely degredation by-products or do they have biological functions?
|
5 |
Biogenèse et fonctions de petits ARN non-codants dérivant d'ARN de transfert, les tRF, chez les plantes / Biogenesis and functions of tRNA-derived small non-coding RNAs, tRFs, in plantsLalande, Stéphanie 12 December 2017 (has links)
Des petits ARN non codants dérivant d'ARN de transfert (tRF) ont été identifiés dans tous les domaines de la vie, et de plus en plus de fonctions importantes leur sont attribuées chez de nombreux organismes. Dans ce travail mené sur la plante modèle Arabidopsis, nous avons d’abord montré que la population en tRF varie en fonction des tissus et des conditions de stress. Concernant leur biogenèse, les endoribonucléases responsables du clivage des ARNt ont été identifiées, il s'agit des RNases T2, RNS1, 2 et 3. Afin de réaliser une étude structure/fonction, une approche d’expression en système de levure a été initiée pour permettre l’obtention de quantité suffisante de RNS1 purifiée. L’étude des fonctions des tRF montre que certains d’entre eux sont associés à AGO1, qu'ils semblent cibler entre-autres des éléments transposables et qu’ils pourraient avoir une localisation nucléaire. Enfin, deux tRF, le tRF-5D (Ala) et le tRF-5D (Asn) inhibent efficacement la traduction in vitro. Une association de tRF-5D (Ala) aux polyribosomes de plantules d'Arabidopsis a pu être visualisée, suggérant que certains tRF puissent agir en tant que régulateur global de la traduction. / Small non-coding RNAs derived from transfer RNAs (tRFs) have been identified in all domains of life, and more and more important functions are attributed to them in many organisms. In this work on the model plant Arabidopsis, we first showed that the tRF population varies according to tissues and stress conditions. With regard to their biogenesis, the endoribonucleases responsible for tRNA cleavage were identified, it is the RNases T2, RNS1, 2 and 3. In order to carry out a structure / function analysis, heterologous expression in yeast has been developed with the hope to get sufficient amount of purified RNS1. The question of tRF functions has also been studied. It has been shown that some tRFs are associated with AGO1, that they often seem to target transposable elements and could have a nuclear localization. Finally, the study of the involvement of the tRFs in the regulation of translation was tackled. Two tRFs, tRF-5D (Ala) and tRF-5D (Asn) efficiently inhibit translation in vitro. An association of tRF-5D (Ala) with polyribosomes of Arabidopsis seedlings could be visualized suggesting that some plant tRFs could as global regulator of the translation process.
|
6 |
Réponse des agents non codants du génome – éléments transposables et petits ARN – à un événement d'allopolyploïdie : le génome du colza (Brassica napus) comme modèle d'étude / Response of non-coding components of the genome – transposable elements and small non-coding RNAs – to a new allopolyploidisation event : the genome of oilseed rape (Brassica napus) as a model of studyMartinez Palacios, Paulina 28 March 2014 (has links)
Le succès évolutif de la polyploïdie, notamment de l’allopolyploïdie (où la duplication de génome complet est associée à une hybridation entre génomes différenciés) est en partie lié au fait que cet événement s’accompagne de nombreux changements dans l'organisation du génome et la régulation de l'expression des gènes. On parle du « choc génomique » de l’hybridation interspécifique et de l’allopolyploïdie. Ces sources de diversité génétique, à la fois structurale et fonctionnelle, apparaissent utiles et nécessaires à l'adaptation et l’évolution des espèces. Alors que de nombreuses études portant sur la compréhension des mécanismes moléculaires à l’origine du succès des allopolyploïdes ont concerné les modifications de l’expression des gènes, mes travaux de thèse ont porté sur les agents non codants du génome que sont les éléments transposables et les petits ARN non codants. Le modèle d'étude est le colza (Brassica napus, AACC), espèce allotétraploïde issue de l'hybridation entre les espèces diploïdes navette (B. rapa, AA) et chou (B. oleracea, CC). Nous disposions de colzas néo-synthétisés, étudiés à différentes générations d’autofécondation, permettant de caractériser les changements génomiques accompagnant la formation puis l’évolution du génome néo-allopolyploïde. Une étude a tout d’abord été menée sur un élément transposable (ET) spécifique du génome C, Bot1, en vue d’identifier de nouvelles transpositions survenant chez les colzas néo-synthétisés par rapport aux parents diploïdes, par une approche SSAP. Quelques rares événements de transposition ont été identifiés. Ces résultats, confrontés à ceux obtenus sur deux autres ET, ont permis de mettre en évidence un impact modéré de l’allopolyploïdie sur la transposition de ces différents ET. Par contre, il est apparu que des changements de méthylation auraient accompagné cette allopolyploïdisation, sans doute à l’origine de la réactivation et la transposition de quelques copies de Bot1. Les petits ARN non codants ont été suggérés comme impliqués dans les différents événements génomiques accompagnant la formation d’un génome allopolyploïde. Pour étudier la dynamique d’expression des petits ARN chez des colzas néo-synthétisés pris à deux générations d’autofécondation (S1, S5) en comparaison de leurs parents diploïdes, j’ai exploité des données de séquençage haut débit obtenues pour 11 banques construites à partir des tiges de ces différents génotypes. J’ai ainsi démontré, qu’à une échelle globale, les petits ARN présentaient une réponse immédiate mais transitoire à l’événement d’allopolyploïdie. Les fractions particulièrement affectées par l’allopolyploïdie se sont révélées correspondre (1) à des petits ARN interférents dérivés d’éléments transposables avec une baisse de leur abondance en génération précoce S1, et (2) à des populations de petits ARN de 21 nucléotides exprimées uniquement de manière très précoce, de l’hybride F1 à la génération S1. Nous avons notamment identifié des transcrits de type viral correspondant à ces petits ARN de 21-nt, et présentant les mêmes profils d’expression (de l’hybride F1 à la génération S1), suggérant une réactivation d’éléments viraux endogènes (EVE) en réponse à l’hybridation et l’allopolyploïdie. L’ensemble de mon étude a démontré la mise en place d’une succession des voies de régulation par petits ARN où ET et EVE, réactivés au niveau transcriptionnel, sont immédiatement soumis à une répression post-transcriptionnelle (PTGS), renforcée ensuite par une répression de leur transcription (TGS). L’hypothèse d’une absence de cette régulation par petits ARN lors des phénomènes de nécrose et létalité hybride, amène à envisager ces populations de petits ARN comme les clés de la réussite de la formation d’un génome hybride, où la répression immédiate et efficace des ET et autres endovirus, réactivés suite au choc génomique, se révèle être une nécessité. / The evolutionary success of polyploid species is partly due to the dynamic changes in genome organization and gene expression patterns that occur at the onset of the polyploid formation. These changes are promoted by the merging of divergent genomes into a single nucleus (i.e. allopolyploidy) that causes a “genomic shock”; they are thought to provide a rich source of new genetic material upon which selection can act to promote adaptation and evolution. Many studies have thus aimed to uncover molecular mechanisms that are responsible for the evolutionary success of allopolyploid species, most of them focusing on gene expression changes. In the present PhD thesis, my interest has been concentrated on the non-coding components of the genome: transposable elements and small non-coding RNAs. My study involves oilseed rape (Brassica napus, AACC), a relatively young allopolyploid species that originated from hybridizations between B. rapa (AA) and B. oleracea (CC). Specifically, I have used resynthesized B. napus polyploids advanced by self-pollination of single plants for several generations; I have analyzed these plants at different generations for genomic changes accompanying polyploid formation and subsequent evolution. In a first part, sequence-specific amplification polymorphism (SSAP) targeting the C genome-specific transposable element Bot1, was used to evaluate transposition rate of Bot1 in resynthesized B. napus in comparison with the diploid parents. Only a few transposition events were identified. When combined with the results obtained for two other TEs, this work suggests that allopolyploidy has only a moderate impact on TE transposition and restructuring. The changes observed in SSAP profiles led us to hypothesize that some of them resulted from changes in DNA methylation, resulting in rare but highly specific TE activation and transposition. In a second part, I have concentrated on small non-coding RNAs (sRNAs), which are thought to mediate different aspects of the response to the “genomic shock” induced by allopolyploid formation. Comprehensive analyses of sRNA expression in resynthesized B. napus allopolyploids have been carried out by deep sequencing sRNAs from 11 libraries prepared from stems of three allotetraploids (surveyed at the two generations S1 and S5) and the two diploid parents. Characterization of sRNA distributions in these plants indicates that sRNAs show an immediate but transient response to allopolyploidy. The sRNAs derived from transposable elements (down-regulated in the S1) or targeting unknown sequences (no Blast hit against any available public database) were particularly affected. The use of B. napus mRNAseq data revealed that these latest unknown candidates, which are 21-nt long and over-expressed in the earliest generations (F1, S0, S1) were derived from endogenous viral elements (EVE). We confirmed that these EVEs showed the same expression patterns as the 21-nt long sRNAs that specifically target them (over-expression in the F1, S0 and S1). These results suggest that (at least) some EVEs might be reactivated as a response to the merging of divergent genomes (in interspecific hybrids and newly formed allopolyploids). Altogether, our results have demonstrated a succession of sRNA pathways that counteract the reactivation of some specific TEs and/or EVEs at the onset of polyploid formation; reactivated TEs and/or EVEs being immediately repressed at the post-transcriptional level (PTGS), and then fully repressed by transcriptional gene silencing (TGS) in the subsequent generations. Such data lead to hypothesize that sRNAs are essential to overcome interspecific hybrid incompatibilities due to the uncontrolled and deleterious reactivation of TEs / EVEs. Therefore, sRNAs should be considered as the guardians of genome integrity even in newly-formed allopolyploids.
|
Page generated in 0.0545 seconds