Spelling suggestions: "subject:"petits intervalle"" "subject:"setits intervalle""
1 |
Les plus grands facteurs premiers d’entiers consécutifs / The largest prime factors of consecutive integersWang, Zhiwei 23 March 2018 (has links)
Dans cette thèse, on s'intéresse aux plus grands facteur premiers d'entiers consécutifs. Désignons par $P^+(n)$ (resp. $P^-(n)$) le plus grand (resp. plus petit) facteur premier d'un entier générique $n\geq 1$ avec la convention que $P^+(1)=1$ (resp. $P^-(1)=\infty$). Dans le premier chapitre, nous étudions les plus grands facteurs premiers d'entiers consécutifs dans les petits intervalles. Nous démontrons qu'il existe une proportion positive d'entiers $n$ tels que $P^+(n)<P^+(n+1)$ pour $n\in\, ]x,\, x+y]$ avec $y=x^{\theta}, \tfrac{7}{12}<\theta\leq 1$. Nous obtenons un résultat similaire pour la condition $P^+(n)>P^+(n+1)$. Dans le deuxième chapitre, nous nous intéressons à la fonction $P_y^+(n)$, où $P_y^+(n)=\max\{p|n:\, p\leq y\}$ et $2\leq y\leq x.$ Nous montrons qu'il existe une proportion positive d'entiers $n$ tels que $P_y^+(n)<P_y^+(n+1)$. En particulier, la proportion d'entiers $n$ avec $P^+(n)<P^+(n+1)$ est plus grande que $0,1356$ en prenant $y=x.$ Les outils principaux sont le crible et un système de poids bien adapté. Dans le troisième chapitre, nous démontrons que les deux configurations $P^+(n-1)>P^+(n)<P^+(n+1)$ et $P^+(n-1)<P^+(n)>P^+(n+1)$ ont lieu pour une proportion positive d'entiers $n$, en utilisant le système de poids bien adapté que l'on a introduit dans le Chapitre 2. De façon similaire, on peut obtenir un résultat plus général pour $k$ entiers consécutifs, $k\in \mathbb{Z}, k\geq3$. Dans le quatrième chapitre, on étudie les plus grands facteurs premiers d'entiers consécutifs voisins d'un entier criblé. Sous la conjecture d'Elliott-Halberstam, nous montrons d'abord que la proportion de la configuration $P^+(p-1)<P^+(p+1)$ est plus grande que $0,1779$. Puis, nous démontrons qu'il existe une proportion positive d'entiers $n$ tels que $P^+(n)<P^+(n+2), P^-(n)>x^{\beta}$ avec $0<\beta<\frac{1}{3}$ / In this thesis, we study the largest prime factors of consecutive integers. Denote by $P^+(n)$ (resp. $P^-(n)$) the largest (resp. the smallest) prime factors of the integer $n\geq 1$ with the convention $P^+(1)=1$ (resp. $P^-(1)=\infty$). In the first chapter, we consider the largest prime factors of consecutive integers in short intervals. We prove that there exists a positive proportion of integers $n$ for $n\in\, (x,\, x+y]$ with $y=x^{\theta}, \tfrac{7}{12}<\theta\leq 1$ such that $P^+(n)<P^+(n+1)$. A similar result holds for the condition $P^+(n)>P^+(n+1)$. In the second chapter, we consider the function $P_y^+(n)$, where $P_y^+(n)=\max\{p|n:\, p\leq y\}$ and $2\leq y\leq x$. We prove that there exists a positive proportion of integers $n$ such that $P_y^+(n)<P_y^+(n+1)$. In particular, the proportion of the pattern $P^+(n)<P^+(n+1)$ is larger than $0.1356$ by taking $y=x.$ The main tools are sieve methods and a well adapted system of weights. In the third chapter, we prove that the two patterns $P^+(n-1)>P^+(n)<P^+(n+1)$ and $P^+(n-1)<P^+(n)>P^+(n+1)$ occur for a positive proportion of integers $n$ respectively, by the well adapted system of weights that we have developed in the second chapter. With the same method, we derive a more general result for $k$ consecutive integers, $k\in \mathbb{Z}, k\geq 3$. In the fourth chapter, we study the largest prime factors of consecutive integers with one of which without small prime factor. Firstly we show that under the Elliott-Halberstam conjecture, the proportion of the pattern $P^+(p-1)<P^+(p+1)$ is larger than $0.1779$. Then, we prove that there exists a positive proportion of integers $n$ such that $P^+(n)<P^+(n+2), P^-(n)>x^{\beta}$ with $0<\beta<\frac{1}{3}$
|
Page generated in 0.095 seconds