Spelling suggestions: "subject:"entiers friable"" "subject:"entiers covariables""
1 |
Trois études autour de sommes de fonctions multiplicatives sur les entiers friables / Three studies on sums of multiplicative functions over friable integersBasquin, Joseph 21 November 2012 (has links)
Ce travail est consacré à l'étude de trois problèmes liés à l'évaluation de sommes de fonctions multiplicatives sur les entiers friables. On dit qu'un nombre entier n est y-friable si son plus grand facteur premier P(n) n'excède pas y. Dans une première partie, nous considérons une fonction multiplicative aléatoire au sens de Wintner, c'est-à-dire une fonction arithmétique multiplicative f supportée par les entiers sans facteur carré, telle que, pour tout entier premier p, f(p) est une variable aléatoire de Bernoulli prenant les valeurs +1 et -1 avec probabilité 1/2. Dans la continuité de travaux de Wintner, Erdös, Halasz, Lau, Tenenbaum et Wu, notre étude est dédiée à l'obtention d'une majoration presque sûre de la fonction sommatoire de f sur les entiers y-friables n'excédant pas x. Un second volet est dévolu à l'évaluation asymptotique des fonctions sommatoires de certaines fonctions multiplicatives, notamment la fonction phi d'Euler, sur les translatés des entiers friables. La méthode employée fait appel à des résultats de répartition des entiers friables dans les progressions arithmétiques. La troisième partie consiste en une étude de la loi moyenne de répartition des diviseurs des entiers friables. Nous établissons le glissement, lorsque le paramètre de friabilité u = (log x)/log y croît, depuis la loi de l'arcsinus (établie en 1979 dans les travaux de Dress, Deshouillers et Tenenbaum) jusqu'à une loi approximativement gaussienne. La loi limite obtenue s'exprime au moyen d'une convolution faisant apparaître les fonctions de Dickman / This dissertation is devoted to studying three problems, all linked to estimates for sums of multiplicative functions over friable integers. An integer n is called y-friable if its largest prime factor P(n) does not exceed y. In a first part, we consider a random multiplicative function in the sense of Wintner, i.e. a multiplicative arithmetic function f supported on squarefree integers and such that, for each prime p, f(p) is a Bernoulli random variable taking each value +1 and -1 with probability 1/2. Elaborating on previous works by Wintner, Erdös, Halasz, Lau, Tenenbaum and Wu, we investigate upper bounds for the summatory function of f over y-friable integers not exceeding x. In the second part, we provide asymptotic estimates for sums of certain multiplicative functions, including Euler's totient, over shifted friable integers. This study depends on the distribution of friable integers in arithmetic progressions. In the third part, we consider a friable extension of the Arcsine law for the mean distribution of the divisors of integers. The original study is due to Deshouillers, Dress and Tenenbaum (1979). We describe the limit law in terms of the Dickman functions and we show that, as the friability parameter u = (log x)/log y increases, the mean distribution drifts from the Arcsine law towards a Gaussian behaviour
|
2 |
Propriétés multiplicatives d'entiers soumis à des conditions digitalesCol, Sylvain 22 June 1996 (has links) (PDF)
Pour une base fixée, les entiers ellipséphiques (c'est-à-dire les entiers dont l'écriture n'utilise que certains chiffres) et les palindromes forment des sous ensembles éparses des entiers, ensembles définis par des conditions digitales. Nous étudions si ces ensembles ont des propriétés multiplicatives similaires à celles des entiers.<br>Nous évaluons d'abord les grands moments de la série génératrice des entiers ellipséphiques. Comme application, nous en déduisons l'existence d'un 0 < c < 1 tel que pour tout entier k, une infinité d'entiers ellipséphiques n possédant un diviseur p^k de l'ordre de n^c, p désignant un nombre premier. De plus, le nombre de tels entiers est de l'ordre de grandeur attendu.<br>Nous établissons ensuite un résultat de crible où les modules possédant un nombre anormalement grand de diviseurs sont écartés du terme d'erreur. Nous en déduisons l'existence d'une proportion positive d'entiers ellipséphiques friables c'est-à-dire possédant tous leurs facteurs premiers majorés par n^c, pour une constante c < 1 fixée.<br>Nous montrons enfin à l'aide de techniques élémentaires comment réduire l'étude de la série génératrice des palindromes à une série proche de celle des entiers ellipséphiques ce qui permet d'étudier la répartition des palindromes dans les progressions arithmétiques et ainsi d'obtenir une majoration de l'ordre de grandeur attendu du nombre de palindromes premiers. Nous en déduisons en particulier l'existence d'une infinité de palindromes possédant en base 10 au plus 372 facteurs premiers (comptés avec multiplicité).
|
3 |
Contribution à la théorie des entiers friablesMartin, Bruno 11 July 2005 (has links) (PDF)
Un entier naturel est dit $y$-friable lorsque son plus grand facteur premier n'excède pas $y$. Ce travail est consacré à l'étude des entiers friables dans le cadre de la théorie analytique et probabiliste des nombres. La première partie est dévolue à un problème posé par Davenport en 1937, qui consiste à déterminer les conditions de validité de diverses généralisations de son développement de la fonction sinus en série de parties fractionnaires. Ces généralisations peuvent être décrites par un couple de fonctions arithmétiques, liées par la relation de convolution $f=g*\1$. Nous traitons le cas où $g$ est la fonction de Piltz d'ordre $z\in\CC$. La deuxième partie est consacrée à l'étude du comportement asymptotique de la constante optimale dans une version friable de l'inégalité de Turán-Kubilius. Précisant des résultats récents de La Bretèche et Tenenbaum, nous généralisons au cas friable une formule asymptotique de la variance d'une fonction arithmétique additive, établie par Hildebrand en 1983.
|
4 |
Entiers friables et formes binaires / Friable integers and binary formsLachand, Armand 02 December 2014 (has links)
Un entier est dit y-friable si tous ses facteurs premiers n'excèdent pas y. Les valeurs friables de formes binaires interviennent de manière essentielle dans l'algorithme de factorisation du crible algébrique (NFS). Dans cette thèse, nous obtenons des formules asymptotiques pour le nombre de représentations des entiers friables par différentes familles de polynômes. Nous considérons dans la première partie les formes binaires qui se décomposent comme produit d'une forme linéaire et d'une forme quadratique. Nous combinons pour cela le principe d'inclusion-exclusion à des idées issues de travaux sur la distribution multiplicative de certaines suites d'entiers représentés par des formes quadratiques développés par Fouvry et Iwaniec, puis Balog, Blomer, Dartyge et Tenenbaum. Dans un second temps, nous nous concentrons sur les valeurs friables de formes cubiques irréductibles. En adaptant les travaux de Heath-Brown et Moroz sur les nombres premiers représentés par de tels polynômes, nous obtenons des formules asymptotiques valides dans un vaste domaine de friabilité. Notre méthode permet également d'évaluer des moyennes sur les valeurs d'une forme cubique pour d'autres fonctions arithmétiques comprenant en particulier les fonctions de Möbius et de Liouville. Dans le dernier chapitre, nous étudions les corrélations de l'indicatrice des friables avec les nilsuites. En employant la méthode nilpotente de Green et Tao, nous en déduisons une formule pour le nombre de valeurs friables d'un produit de formes affines deux à deux affinement indépendantes / An integer is called y-friable if its largest prime factor does not exceed y. Friable values of binary forms play a central role in the integer factoring algorithm NFS (Number Field Sieve). In this thesis, we obtain some asymptotic formulas for the number of representations of friable integers by various classes of polynomials. In the first part, we focus on binary forms which split as a product of a linear form and a quadratic form. To achieve this, we combine the inclusion-exclusion principle with ideas based on works of Fouvry and Iwaniec and Balog, Blomer, Dartyge and Tenenbaum related to the distribution of some sequences of integers represented by quadratic forms. We then take a closer look at friable values of irreducible cubic forms. Extending some previous works of Heath-Brown and Moroz concerning primes represented by such polynomials, we provide some asymptotic formulas which hold in a large range of friability. With this method, we also evaluate some means over the values of an irreducible cubic form for other multiplicative functions including the Möbius function and the Liouville function. In the last chapter, we investigate the correlations between nilsequences and the characteristic function of friable integers. By using the nilpotent method of Green and Tao, our work provides a formula for the number of friable integers represented by a product of affine forms such that any two forms are affinely independent
|
5 |
Les plus grands facteurs premiers d’entiers consécutifs / The largest prime factors of consecutive integersWang, Zhiwei 23 March 2018 (has links)
Dans cette thèse, on s'intéresse aux plus grands facteur premiers d'entiers consécutifs. Désignons par $P^+(n)$ (resp. $P^-(n)$) le plus grand (resp. plus petit) facteur premier d'un entier générique $n\geq 1$ avec la convention que $P^+(1)=1$ (resp. $P^-(1)=\infty$). Dans le premier chapitre, nous étudions les plus grands facteurs premiers d'entiers consécutifs dans les petits intervalles. Nous démontrons qu'il existe une proportion positive d'entiers $n$ tels que $P^+(n)<P^+(n+1)$ pour $n\in\, ]x,\, x+y]$ avec $y=x^{\theta}, \tfrac{7}{12}<\theta\leq 1$. Nous obtenons un résultat similaire pour la condition $P^+(n)>P^+(n+1)$. Dans le deuxième chapitre, nous nous intéressons à la fonction $P_y^+(n)$, où $P_y^+(n)=\max\{p|n:\, p\leq y\}$ et $2\leq y\leq x.$ Nous montrons qu'il existe une proportion positive d'entiers $n$ tels que $P_y^+(n)<P_y^+(n+1)$. En particulier, la proportion d'entiers $n$ avec $P^+(n)<P^+(n+1)$ est plus grande que $0,1356$ en prenant $y=x.$ Les outils principaux sont le crible et un système de poids bien adapté. Dans le troisième chapitre, nous démontrons que les deux configurations $P^+(n-1)>P^+(n)<P^+(n+1)$ et $P^+(n-1)<P^+(n)>P^+(n+1)$ ont lieu pour une proportion positive d'entiers $n$, en utilisant le système de poids bien adapté que l'on a introduit dans le Chapitre 2. De façon similaire, on peut obtenir un résultat plus général pour $k$ entiers consécutifs, $k\in \mathbb{Z}, k\geq3$. Dans le quatrième chapitre, on étudie les plus grands facteurs premiers d'entiers consécutifs voisins d'un entier criblé. Sous la conjecture d'Elliott-Halberstam, nous montrons d'abord que la proportion de la configuration $P^+(p-1)<P^+(p+1)$ est plus grande que $0,1779$. Puis, nous démontrons qu'il existe une proportion positive d'entiers $n$ tels que $P^+(n)<P^+(n+2), P^-(n)>x^{\beta}$ avec $0<\beta<\frac{1}{3}$ / In this thesis, we study the largest prime factors of consecutive integers. Denote by $P^+(n)$ (resp. $P^-(n)$) the largest (resp. the smallest) prime factors of the integer $n\geq 1$ with the convention $P^+(1)=1$ (resp. $P^-(1)=\infty$). In the first chapter, we consider the largest prime factors of consecutive integers in short intervals. We prove that there exists a positive proportion of integers $n$ for $n\in\, (x,\, x+y]$ with $y=x^{\theta}, \tfrac{7}{12}<\theta\leq 1$ such that $P^+(n)<P^+(n+1)$. A similar result holds for the condition $P^+(n)>P^+(n+1)$. In the second chapter, we consider the function $P_y^+(n)$, where $P_y^+(n)=\max\{p|n:\, p\leq y\}$ and $2\leq y\leq x$. We prove that there exists a positive proportion of integers $n$ such that $P_y^+(n)<P_y^+(n+1)$. In particular, the proportion of the pattern $P^+(n)<P^+(n+1)$ is larger than $0.1356$ by taking $y=x.$ The main tools are sieve methods and a well adapted system of weights. In the third chapter, we prove that the two patterns $P^+(n-1)>P^+(n)<P^+(n+1)$ and $P^+(n-1)<P^+(n)>P^+(n+1)$ occur for a positive proportion of integers $n$ respectively, by the well adapted system of weights that we have developed in the second chapter. With the same method, we derive a more general result for $k$ consecutive integers, $k\in \mathbb{Z}, k\geq 3$. In the fourth chapter, we study the largest prime factors of consecutive integers with one of which without small prime factor. Firstly we show that under the Elliott-Halberstam conjecture, the proportion of the pattern $P^+(p-1)<P^+(p+1)$ is larger than $0.1779$. Then, we prove that there exists a positive proportion of integers $n$ such that $P^+(n)<P^+(n+2), P^-(n)>x^{\beta}$ with $0<\beta<\frac{1}{3}$
|
Page generated in 0.0649 seconds