Spelling suggestions: "subject:"conormes binaire"" "subject:"coformes binaire""
1 |
Comparaison d'images binaires reposant sur une mesure locale des dissimilarités Application à la classification /Baudrier, Etienne Ruan, Su. January 2005 (has links) (PDF)
Reproduction de : Thèse de doctorat : Traitement de l'image et mathématiques appliquées : Reims : 2005. / Titre provenant de l'écran titre. Bibliogr. f. 185-193.
|
2 |
Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive / Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristicBasson, Romain 24 June 2015 (has links)
L'objet de cette thèse est une description effective des espaces de modules des courbes hyper- elliptiques de genre 3 en caractéristiques positives. En caractéristique nulle ou impaire, on obtient une paramétrisation de ces espaces de modules par l'intermédiaire des algèbres d'invariants pour l'action du groupe spécial linéaire sur les espaces de formes binaires de degré 8, qui sont de type fini. Suite aux travaux de Lercier et Ritzenthaler, les cas des corps de caractéristiques 3, 5 et 7 restaient ouverts. Pour ces derniers, les méthodes classiques de la caractéristique nulle sont inno- pérantes pour l'obtention de générateurs pour les algèbres d'invariants en jeu. Nous nous sommes donc contenté d'exhiber des invariants séparants en caractéristiques 3 et 7. En outre, nos résultats concernant la caractéristique 5 suggèrent l'inadéquation de cette approche pour ce cas. À partir de ces résultats, nous avons pu expliciter la stratification des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristiques 3 et 7 selon les groupes d'automorphismes et implémenté divers algorithmes, dont celui de Mestre, pour la reconstruction d'une courbe à partir de son module, ie la valeur de ses invariants. Pour cette phase de reconstruction, nous nous sommes notamment attaché aux questions arithmétiques, comme l'existence d'une obstruction à être un corps de définition pour le corps de module et, dans le cas contraire, à l'obtention d'un modèle de la courbe sur ce corps minimal. Enfin pour la caractéristique 2, notre approche est différente, dans la mesure où les courbes sont étudiées via leur modèle d'Artin-Schreier. Nous exhibons pour celles-ci des invariants bigradués qui dépendent de la structure arithmétique des points de ramifications des courbes. / The aim of this thesis is to provide an explicite description of the moduli spaces of genus 3 hyperelliptic curves in positive characteristic. Over a field of characteristic zero or odd, a parame- terization of these moduli spaces is given via the algebra of invariants of binary forms of degree 8 under the action of the special linear group. After the work of Lercier and Ritzenthaler, the case of fields of characteristic 3, 5 and 7 are still open. However, in these remaining case, the classical methods in characteristic zero do not work in order to provide generators for these algebra of invariants. Hence we provide only separating invariants in characteristic 3 and 7. Furthermore our results in characteristic 5 show this approach is not suitable. From these results, we describe the stratification of the moduli spaces of genus 3 hyperelliptic curves in characteristic 3 and 7 according to the automorphism groups of the curves and imple- ment algorithms to reconstruct a curve from its invariants. For this reconstruction stage, we paid attention to arithmetic issues, like the obstruction to be a field of definition for the field of moduli. Finally, in the characteristic 2 case, we use a different approach, given that the curves are defined by their Artin-Schreier models. The arithmetic structure of the ramification points of these curves stratify the moduli space in 5 cases and we define in each case invariants that characterize the isomorphism class of hyperelliptic curves.
|
3 |
Géométrie des espaces de tenseurs : une approche effective appliquée à la mécanique des milieux continus / Geometry of tensor spaces : an effective approach applied to continuum mechanicsOlive, Marc 19 November 2014 (has links)
Plusieurs lois de comportement mécaniques possèdent une formulation tensorielle, comme c'est le cas pour l'élasticité où intervient un espace de tenseurs d'ordre 4, noté Ela. La classification des matériaux élastiques passent par la nécessité de décrire l'espace des orbites ELA/SO(3). Plus généralement, on étudie la géométrie d'un espace de tenseurs sur $mathbb{R}^{3}$, via l'action du groupe O(3). Cette géométrie est caractérisée par ses classes d'isotropies, ou encore classes de symétries. Tout espace de tenseurs possède en effet un nombre fini de classes d'isotropies. Nous proposons alors une méthode originale et générale pour obtenir ces classes d'istropie. Nous avons ainsi pu obtenir pour la première fois les classes d'isotropie d'un espace de tenseurs d'ordre 8 intervenant en théorie de l'élasticité linéaire du second-gradient de la déformation.Pour une représentation réelle d'un groupe compact, l'algèbre des polynômes invariants sépare les orbites, d'où la recherche d'une famille génératrice minimale de cette algèbre. Pour cela, on exploitant le lien entre les espaces de tenseurs et les espaces de formes binaires. Nous avons ainsi repris et ré-interprété les approches effectives de cette théorie, développées par Gordan au 19ième siècle. Cette ré-interprétation nous a permis d'obtenir de nombreux résultats, dont une famille génératrice minimale d'invariants pour l'élasticité mais aussi pour la piézoélectricté. Nous avons pu retrouver d'une façon simple les séries de Gordan, ainsi que des relations plus récentes d'Abdesselam--Chipalkatti sur les transvectants de formes binaires. / Tensorial formulation of mechanical constitutive equations is a very important matter in continuum mechanics. For instance, the space of elastic tensors is a subspace of 4th order tensors with a natural SO(3) group action. More generaly, we have to study the geometry of a tensor space defined on $mathbb{R}^{3}$, under O(3) group action.To describe such a geometry, we first have to exhibit its isotropy classes, also named symetry classes. Indeed, each tensor space possesses a finite number of isotropy classes. In this present work, we propose an original method to obtain isotropy classes of a given tensor space. As an illustration of this new method, we get for the first time the isotropy classes of a 8th order tensor space occuring in second strain-gradient elasticity theory. In the case of a real representation of a compact group, invariant algebra seperates the orbits. This observation motivates the purpose to find a finite generating set of polynomial invariants. For that purpose, we make use of the link between tensor spaces and spaces of binary forms, which belongs to the classical invariant theory. We thus have to deal with SL(2,$mathbb{C}$) group action. To obtain new results, we have reformulated and reinterpreted effective approaches of Gordan's algorithm, developped during XIXth century. We then obtain for the first time a minimal generating family of elasticity tensor space, and a generating family of piezoelectricity tensor space. Using linear algebra arguments, we were also able to get important relations of classical invariant theory, such as the Gordan's series and the Abdesselam--Chipalkatti's quadratic relations on transvectants.
|
4 |
Entiers friables et formes binaires / Friable integers and binary formsLachand, Armand 02 December 2014 (has links)
Un entier est dit y-friable si tous ses facteurs premiers n'excèdent pas y. Les valeurs friables de formes binaires interviennent de manière essentielle dans l'algorithme de factorisation du crible algébrique (NFS). Dans cette thèse, nous obtenons des formules asymptotiques pour le nombre de représentations des entiers friables par différentes familles de polynômes. Nous considérons dans la première partie les formes binaires qui se décomposent comme produit d'une forme linéaire et d'une forme quadratique. Nous combinons pour cela le principe d'inclusion-exclusion à des idées issues de travaux sur la distribution multiplicative de certaines suites d'entiers représentés par des formes quadratiques développés par Fouvry et Iwaniec, puis Balog, Blomer, Dartyge et Tenenbaum. Dans un second temps, nous nous concentrons sur les valeurs friables de formes cubiques irréductibles. En adaptant les travaux de Heath-Brown et Moroz sur les nombres premiers représentés par de tels polynômes, nous obtenons des formules asymptotiques valides dans un vaste domaine de friabilité. Notre méthode permet également d'évaluer des moyennes sur les valeurs d'une forme cubique pour d'autres fonctions arithmétiques comprenant en particulier les fonctions de Möbius et de Liouville. Dans le dernier chapitre, nous étudions les corrélations de l'indicatrice des friables avec les nilsuites. En employant la méthode nilpotente de Green et Tao, nous en déduisons une formule pour le nombre de valeurs friables d'un produit de formes affines deux à deux affinement indépendantes / An integer is called y-friable if its largest prime factor does not exceed y. Friable values of binary forms play a central role in the integer factoring algorithm NFS (Number Field Sieve). In this thesis, we obtain some asymptotic formulas for the number of representations of friable integers by various classes of polynomials. In the first part, we focus on binary forms which split as a product of a linear form and a quadratic form. To achieve this, we combine the inclusion-exclusion principle with ideas based on works of Fouvry and Iwaniec and Balog, Blomer, Dartyge and Tenenbaum related to the distribution of some sequences of integers represented by quadratic forms. We then take a closer look at friable values of irreducible cubic forms. Extending some previous works of Heath-Brown and Moroz concerning primes represented by such polynomials, we provide some asymptotic formulas which hold in a large range of friability. With this method, we also evaluate some means over the values of an irreducible cubic form for other multiplicative functions including the Möbius function and the Liouville function. In the last chapter, we investigate the correlations between nilsequences and the characteristic function of friable integers. By using the nilpotent method of Green and Tao, our work provides a formula for the number of friable integers represented by a product of affine forms such that any two forms are affinely independent
|
Page generated in 0.0603 seconds