• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 34
  • 25
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Tertiary biovalorisation of Grape pomace

Angadam, Justine Oma January 2018 (has links)
Thesis (Masters of Environmental Health)--Cape Peninsula University of Technology, 2018. / In the Western Cape, South Africa and other regions globally, grape pomace (GP) is one of the abundant agro-waste from the winery industry. This study reports on the hyper-extraction of fermentable sugars from GP treated with white rot fungi (WRF) Phanerochaete chrysosporium BKMF 1767 to facilitate improved biovalorisation for total reducing sugars (TRS) extraction in conjunction with Nepenthes mirabilis digestive fluids. TRS were quantified using the 3,5-dinitrosalicylic acid (DNS) reagent method. The free readily dissolvable sugars from the GP recorded for the bio-treated (BT) samples was 206.39 ± 0.06 mg/L and for the untreated (UT) samples was 271.05 ± 0.02 mg/L. Overall, the TRS yield for the Bio-treated (BT) and untreated (UT) samples was recorded as 205.68 ± 0.09 and 380.93 ± 0.14 mg/L, respectively, using hot water pretreatment (HWP) with 2266.00 ± 0.73 (BT) and 2850.68 ± 0.31 mg/L (UT), respectively, for dilute acid pretreatment (DAP); with 2068.49 ± 6.02 (BT) and 2969.61 ± 8.054 mg/L (UT) respectively, using the cellulase pretreatment (CP) method. Using the HWP as a reference, the relative increases imparted by the biotreatment was higher (51%) for DAP and low (33%) for CP. The combination of conventional used pre-treatment methods (hot water pretreatment, dilute acid pre-treatment, and cellulase pre-treatment) in a single pot system was also done while monitoring the total residual phenolics (TRPCs) in the samples. Furthermore, powder X-ray diffraction (pXRD) were used to measure the crystallinity index (CrI) and functional groups of pre- and post-pretreated GP to ascertain the efficiency of the pre-treatment methods, with quantification of lignin, holocellulose, and ash. Overall, the TRS yield for N. mirabilis pre-treated agro-waste was 951 mg/L ± 4.666 mg/L, with biomass having a lower CrI of 33%, and 62% residual lignin content. Furthermore, reduced TRPCs were observed in hydrolysate, suggesting limited inhibitory by-product formation during N. mirabilis pre-treatment
32

Estudo comparativo das características bioquímicas funcionais e especificidade catalítica de aspartil, cisteíno e serino peptidases fúngicas / Comparative study of functional biochemical characteristics and catalytic specificity of aspartyl, cysteine and serine fungal peptidases

Silva, Ronivaldo Rodrigues da [UNESP] 12 February 2016 (has links)
Submitted by RONIVALDO RODRIGUES DA SILVA (rds.roni@yahoo.com.br) on 2016-03-01T13:46:53Z No. of bitstreams: 1 Tese Doutorado RONIVALDO R. SILVA.pdf: 3318357 bytes, checksum: 82fadd527a2ede34e2a0a237a881e8f8 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-03-01T18:27:48Z (GMT) No. of bitstreams: 1 silva_rr_dr_sjrp.pdf: 3318357 bytes, checksum: 82fadd527a2ede34e2a0a237a881e8f8 (MD5) / Made available in DSpace on 2016-03-01T18:27:48Z (GMT). No. of bitstreams: 1 silva_rr_dr_sjrp.pdf: 3318357 bytes, checksum: 82fadd527a2ede34e2a0a237a881e8f8 (MD5) Previous issue date: 2016-02-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Aspártico (E.C. 3.4.23), cisteíno (E.C. 3.4.22) e serino peptidases (E.C. 3.4.21) são endopeptidases, cujos modos de ação são dependentes de resíduos de ácido aspártico, cisteína e serina presentes no sítio catalítico, respectivamente. Atualmente, vários estudos são realizados na busca por novas enzimas com relevantes propriedades bioquímicas para aplicação industrial. Neste contexto, nós propomos a produção de enzimas em bioprocesso submerso, purificação, estudo das propriedades bioquímicas e determinação da especificidade catalítica das peptidases secretadas pelos fungos filamentosos Rhizomucor miehei, Phanerochaete chrysosporium e Leptosphaeria sp. Inicialmente, após produção por bioprocesso submerso, estas enzimas foram purificadas utilizando cromatografias de exclusão molecular e troca iônica. Em ensaios de inibidores na atividade enzimática, notamos inibição das peptidases por pepstatina A (R. miehei), ácido iodoacético/N-Etilmaleimida (P. chrysosporium) e fluoreto de fenil metil sulfonila (Leptosphaeria sp), sendo então definidas como aspártico, cisteíno e serino peptidases, respectivamente. Por SDS-PAGE (12%), as massas moleculares foram estimadas em 37 kDa (aspártico), 23 kDa (cisteíno) e 35 kDa (serino). O máximo de atividade proteolítica foi alcançado em pH 5,5 e 55 ºC para peptidase aspártica secretada por R. miehei; pH 7 e faixa de temperatura 45-55 ºC para cisteíno peptidase secretada por P. chrysosporium, e pH 7 e 45 ºC para serino peptidase secretada por Leptosphaeria sp. Sob efeito de incubação a diferentes pH, a peptidase aspártica mostrou-se estável em condições ácidas (pH 3-5); cisteíno peptidase foi estável em ampla faixa de pH (pH 4-9), e serino peptidase mostrou-se mais estável em condições com tendências alcalinas e pH ligeiramente ácido (pH 5-9). Em todas estas faixas de pH citadas, as peptidases apresentaram atividade proteolítica acima de 80% por 1 hora de incubação. Quanto à estabilidade térmica, a cisteíno peptidase mostrou-se mais termoestável dentre as três enzimas e serino peptidase descreveu a menor tolerância à temperatura. Em incubação com agentes desnaturantes, observamos redução na atividade proteolítica sob efeito de surfactantes iônicos (0,02-1%): dodecil sulfato de sódio (SDS) e brometo de cetil-trimetil amônio (CTAB); íon cobre II (5 mM); Ditiotreitol (DTT) e guanidina (ambos na faixa de 10-200 mM) para todas as peptidases. Por último, em estudo de especificidade catalítica destas enzimas, observamos a preferência por aminoácidos aromáticos (F e W), básicos (K e R) e apolares (em particular, resíduo de metionina) para peptidase aspártica. Alta especificidade descrita por cisteíno peptidase, cuja preferência catalítica é notória por aminoácidos básicos (K, H e R), especialmente na posição P3 e lisina-dependência para catálise na posição P'3. Em serino peptidase, notamos maior aceitação por aminoácidos apolares (G, I, L, M e V), básicos (H e R) e polares neutros (N e Q) para as diferentes posições avaliadas no substrato. / Aspartic (EC 3.4.23), cysteine (EC 3.4.22) and serine peptidases (EC 3.4.21) are endopeptidases whose modes of action are dependent on aspartic acid, cysteine and serine residues present in the catalytic site, respectively. Currently, several studies are conducted in the search for new enzymes with relevant biochemical properties for industrial application. In this context, we propose the production of enzymes in submerged bioprocess, purification, the study of biochemical properties and determining the catalytic specificity peptidases secreted by the filamentous fungus Rhizomucor miehei, Phanerochaete chrysosporium and Leptosphaeria sp. Initially, after production submerged bioprocess, these enzymes have been purified using size-exclusion and ion exchange chromatographies. In the effect of inhibitors on enzyme activity, we note peptidase inhibition by pepstatin A (R. miehei), iodoacetic acid/ N-Ethylmaleimide (P. chrysosporium) and phenyl methyl sulfonyl fluoride (Leptosphaeria sp), suggesting that these enzymes are aspartic, cysteine and serine peptidases, respectively. For SDS-PAGE (12%), molecular weights were estimated at 37 kDa (aspartic), 23 kDa (cysteine) and 35 kDa (serine). Maximum proteolytic activity was achieved at pH 5.5 and 55 °C for aspartic peptidase secreted by R. miehei; pH 7 and temperature range 45-55 °C for cysteine peptidase secreted by P. chrysosporium and pH 7 and 45 °C for serine peptidase secreted by Leptosphaeria sp. Under incubation at different pH effect, aspartic peptidase was stable under acidic conditions (pH 3-5); cysteine peptidase was stable in wide pH range (pH 4-9), and serine peptidase was more stable under alkaline conditions and pH slightly acidic (pH 5-9). In all these pH ranges mentioned, peptidases showed proteolytic activity above 80% by 1 hour incubation. As regards the thermal stability, cysteine peptidase was more thermostable enzyme and serine peptidase described the lowest temperature tolerance. In incubation with denaturing agents, we observed a decrease in proteolytic activity under the effect of ionic surfactant (0.02-1%) sodium dodecyl sulfate (SDS) bromide and cetyl-trimethyl ammonium bromide (CTAB); copper (II) ion (5 mM); Dithiothreitol (DTT) and guanidine (both in the range of 10-200 mM) for all peptidases. Finally, the study of catalytic specificity of these enzymes, we found a preference for aromatic amino acids (F and W), basic (K and R) and nonpolar (in particular, methionine residue) to aspartic peptidase. High specificity described by cysteine peptidase, which a catalytic preference is notorious for basic amino acids (K, R and H), especially in position P3 and lysine-dependence for catalysis at position P'3. In serine peptidase, for different evaluated positions, we noticed greater acceptance by nonpolar amino acids (G, I, L, M and V), basic (M and R) and neutral polar (N and Q).
33

Produkce mikrobiálních enzymů a jejich stabilizace enkapsulací / Production of microbial enzymes and their stabilization by encapsulation

Hazuchová, Eva January 2016 (has links)
The present thesis deals with the production of microbial enzymes and their subsequent stabilization through encapsulation. The theoretical part focuses on microbial enzymes, especially extracellular hydrolases, their producers and characteristics. Within the theory is also discussed the possibility of the application of enzymes in the field of pharmacy and medicine. Experimental work was focused on the actual production of microbial enzymes and methods for their to stabilization. The production of proteolytic and lipolytic enzymes in dependence on time and the used culture substrate were followed. The highest enzyme production was observed in Aspergillus oryzae when cultured on wheat bran at the third day of cultivation. In the experimental part was further carried out the identification, isolation and purification of enzymes. A substantial part of the experiment was to stabilize produced microbial enzymes by encapsulation. Enzymes were entrapped into alginate particles with encapsulation efficiency in the range of 55-70 %. The highest efficiency exhibited encapsulated enzymes from Aspergillus oryzae. Subsequently, long-term stability of the encapsulated enzyme in two environments (in water and gel) was followed during six weeks incomparison with free enzyme. During storage of free enzyme a significant decrease in enzyme activities occured, especially between the fourth and sixth week of storage. On the contrary, in encapsulated increased enzyme activities were observed. Empty particles exhibited higher stability during storage in the gel than in water. In this thesis potential use of enzymes in the pharmaceutical industry as agents promoting digestion was tested too. According to the results, particles with encapsulated microbial enzymes could be considered as suitable for some pharmaceutical applications.
34

Functional Genomics of Xenobiotic Detoxifying Fungal Cytochrome P450 System

Subramanian, Venkataramanan 23 April 2008 (has links)
No description available.

Page generated in 0.0558 seconds