• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 10
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Water in archaeological wood : a critical appraisal of some diagnostic tools for degradation assessment

Ogilvie, Ticca Margaret Alison January 2000 (has links)
No description available.
2

Development of Metalated Amino Acids and Peptides as Oxidation Catalysts and Application of Those to Selective Lignin Degradation / メタル化アミノ酸・ペプチドを触媒とする酸化反応の開発およびリグニン精密分解への応用

Yoshida, Ryouta 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20395号 / 工博第4332号 / 新制||工||1671(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 中村 正治, 教授 大江 浩一, 教授 村田 靖次郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
3

Studies on the novel selective β-O-4 cleavage method of lignins by E1cB type elimination reaction assisted by the sulfone group -γ-TTSA method- / スルホン基のE1cB型脱離反応を用いたリグニンのβ-O-4結合選択的開裂法の研究 --γ-TTSA法--

Ando, Daisuke 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第18324号 / 農博第2049号 / 新制||農||1021(附属図書館) / 学位論文||H26||N4831(農学部図書室) / 31182 / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 髙野 俊幸, 教授 西尾 嘉之, 教授 梅澤 俊明 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
4

Evaluation of the Nutritional Requirement and Wood Decay Properties of a Termite Mushroom, Termitomyces eurrhizus / オオシロアリタケの栄養要求性と木材腐朽特性の評価

Ono, Kazuko 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20421号 / 農博第2206号 / 新制||農||1047(附属図書館) / 学位論文||H29||N5042(農学部図書室) / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 吉村 剛, 教授 梅澤 俊明, 教授 本田 与一 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
5

Lignin Degradation and Dilute Acid Pretreatment for Cellulosic Alcohol Production

Cheng, Lei 30 September 2010 (has links)
No description available.
6

Estudo da degradação de lignina iniciada por metabólicos extracelulares extraídos de cultivos de Ceriporiopsis subvermispora / Evaluation of lignin degradation initiated by extracellular metabolites recovered from Ceriporiopsis subvermispora cultures

Masarin, Fernando 29 July 2010 (has links)
Ceriporiopsis subvermispora é um fungo filamentoso, muito seletivo na degradação de lignina e, por isso, tem sido uma das espécies mais estudadas no processo de biopolpação. A biopolpação consiste em um tratamento biológico da madeira que antecede etapas convencionais de polpação, proporcionando níveis de economia de energia elétrica no processo que podem atingir valores de 30 a 40%. Para degradar a lignina, esse fungo secreta a enzima manganês-peroxidase (MnP), a qual requer um ácido carboxílico para quelar e transportar íons Mn3+ oriundos do seu ciclo catalítico. O complexo quelante-Mn3+ degrada apenas frações fenólicas da lignina, porém pode também iniciar a peroxidação de lipídeos e com isso gerar radicais peroxila que apresentam capacidade oxidativa suficiente para degradar estruturas não-fenólicas da lignina. Com base nesses aspectos, o presente trabalho teve o objetivo de avaliar a degradação de lignina por reações que envolvem a peroxidação de ácido linoléico iniciadas por metabólitos extracelulares extraídos de cultivos de C. subvermispora. Também foram avaliados sistemas miméticos baseados nos íons Fe2+ e Mn3+ como iniciadores das mesmas reações. Essencialmente, foi estudada a degradação de lignina in vitro em reações iniciadas por sistemas compostos que incluíram, MnP/Mn+2/H2O2, Fe3+/agentes redutores de Fe3+ produzidos durante a biodegradação da madeira, íons Mn+3 ou íons Fe+2, todos adicionados ao ácido linoléico. Para realizar esse estudo foi necessário preparar, tanto MnP, quanto compostos redutores de Fe3+, em cultivos de C. subvermispora. Também foram preparados e caracterizados dois substratos para as reações em estudo. Esses substratos compreenderam um complexo lignina-carboidrato (CLC) e um modelo de um material lignocelulósico completo, porém moído e livrado de toda a fração de extrativos. Nos dois casos, o material de partida foi à madeira de Eucalyptus grandis. A caracterização química desses substratos indicou um teor de lignina de 44,8% e 29,0%, respectivamente. Reações de peroxidação de ácido linoléico iniciadas pelos sistemas em estudo mostraram que todos foram efetivos para esse propósito, sendo que as maiores taxas de consumo de oxigênio durante essas reações foram observadas nos meios reacionais que continham Fe2+ em solução. O CLC inibiu as reações de peroxidação quando adicionado ao meio reacional em concentraçãoes maiores do que 0,3 mg/mL. Entretanto, reações prolongadas por 72 h com o CLC numa concentração inicial de 1 mg/mL indicaram que ele sofreu despolimerização. As vias de degradação da lignina contida no CLC ou na madeira de E. grandis moída envolveram a despolimerização da molécula, ou simplesmente a oxidação das cadeias laterais e das estruturas fenólicas livres. Quando o sistema foi baseado na ação de MnP/Mn+2/H2O2/ácido linoléico, foram comprovadas vias de degradação da lignina que envolveram desde a simples oxidação do carbono-α até a quebra de ligações do tipo β-O-4 e/ou entre os carbonos α e β. Os resultados obtidos corroboraram dados anteriormente publicados para a ação de C. subvermispora in vivo. Uma exceção foi à observação da reação de simples oxidação do Cα nos sistemas in vitro, que havia sido descartada em trabalhos anteriores que se basearam na caracterização de lignina contida em madeira biotratada por C. subvermispora (sistema in vivo). Os resultados permitiram concluir que vários sistemas miméticos podem iniciar a peroxidação de ácido linoléico in vitro. Quando essas reações foram conduzidas na presença de lignina (CLC ou E. grandis moído) foi possível observar transformações importantes na estrutura da lignina que eventualmente poderiam ser exploradas, por exemplo, em etapas de processos de branqueamento de polpas kraft. / The white-rot fungus Ceriporiopsis subvermispora degrades lignin selectively, being one of the most studied species in biopulping. Biopulping consists of a biological treatment of wood that precedes conventional pulping stages. The process can provide up to 30-40% of energy savings in mechanical pulping. To degrade lignin, this fungus secretes the enzyme manganese-peroxidase (MnP), which needs carboxylic acids to chelate and transport Mn3+ ions formed in the catalytic cycle of the enzyme. The chelate-Mn3+ complex is able to degrade phenolic structures of lignin; however, can also initiate lipid peroxidation reactions generating peroxyl radicals that are able to degrade nonphenolic lignin structures. Based on this background, the aim of this work was to evaluate lignin degradation through linoleic acid peroxidation reactions initiated by extracellular metabolites recovered from C. subvermispora cultures. Some biomimetic systems based on Fe2+ and Mn3+ ions were also evaluated as initiators of such reactions. The lignin degradation was studied in reaction systems composed of MnP/Mn+2/H2O2, Fe3+-reducing compounds produced during wood biodegradation by C. subvermispora, Mn+3 or Fe+2 ions, all of them in the presence of linoleic acid. To perform this study, MnP and Fe3+-reducing compounds were initially produced in C. subvermispora cultures. Two different reaction substrates were also prepared. One was a lignin-carbohydrate complex (LCC) and, the other, was a complete lignocellulosic material that was milled and extracted to remove the extractive fraction. Both substrates were prepared from Eucalyptus grandis wood. The chemical characterization of the substrates showed 44.8 % and 29.0 % of total lignin, respectively. Linoleic acid peroxidation reactions initiated by the studied systems showed that all of them were efficient on this purpose. The highest oxygen consumption rates during these reactions were observed in the Fe2+ initiated reactions. The LCC inhibited the peroxidation reactions when added to the reaction medium at concentrations higher than 0.3 mg/mL. However, prolonging the reactions up to 72h with LCC at 1 mg/mL showed that it was depolymerized. The lignin degradation routes involved depolymerization or simple side chain and free-phenolic structure oxidations. When the reactive system was based on the use of MnP/Mn+2/H2O2/linoleic acid, some lignin degradation routes were demonstrated and they included Cα-oxidation, as well as β-O-4 and/or Cα-Cβ cleavages. These results corroborate previous findings published for the action of C. subvermispora in vivo. One exception was the simple Cα oxidation that was observed for the in vitro reactions, but was ruled out by previous works that were based on the characterization of residual lignins extracted from wood samples biotreated by C. subvermispora (in vivo system). The current results permitted to conclude that several mimetic systems were able to initiate linoleic acid peroxidation in vitro. When these reactions were performed in the presence of lignin (LCC or milled E. grandis) it was possible to show the occurrence of several lignin transformation reactions that could be exploited, for example, in pulp bleaching processes.
7

Estudo da degradação de lignina iniciada por metabólicos extracelulares extraídos de cultivos de Ceriporiopsis subvermispora / Evaluation of lignin degradation initiated by extracellular metabolites recovered from Ceriporiopsis subvermispora cultures

Fernando Masarin 29 July 2010 (has links)
Ceriporiopsis subvermispora é um fungo filamentoso, muito seletivo na degradação de lignina e, por isso, tem sido uma das espécies mais estudadas no processo de biopolpação. A biopolpação consiste em um tratamento biológico da madeira que antecede etapas convencionais de polpação, proporcionando níveis de economia de energia elétrica no processo que podem atingir valores de 30 a 40%. Para degradar a lignina, esse fungo secreta a enzima manganês-peroxidase (MnP), a qual requer um ácido carboxílico para quelar e transportar íons Mn3+ oriundos do seu ciclo catalítico. O complexo quelante-Mn3+ degrada apenas frações fenólicas da lignina, porém pode também iniciar a peroxidação de lipídeos e com isso gerar radicais peroxila que apresentam capacidade oxidativa suficiente para degradar estruturas não-fenólicas da lignina. Com base nesses aspectos, o presente trabalho teve o objetivo de avaliar a degradação de lignina por reações que envolvem a peroxidação de ácido linoléico iniciadas por metabólitos extracelulares extraídos de cultivos de C. subvermispora. Também foram avaliados sistemas miméticos baseados nos íons Fe2+ e Mn3+ como iniciadores das mesmas reações. Essencialmente, foi estudada a degradação de lignina in vitro em reações iniciadas por sistemas compostos que incluíram, MnP/Mn+2/H2O2, Fe3+/agentes redutores de Fe3+ produzidos durante a biodegradação da madeira, íons Mn+3 ou íons Fe+2, todos adicionados ao ácido linoléico. Para realizar esse estudo foi necessário preparar, tanto MnP, quanto compostos redutores de Fe3+, em cultivos de C. subvermispora. Também foram preparados e caracterizados dois substratos para as reações em estudo. Esses substratos compreenderam um complexo lignina-carboidrato (CLC) e um modelo de um material lignocelulósico completo, porém moído e livrado de toda a fração de extrativos. Nos dois casos, o material de partida foi à madeira de Eucalyptus grandis. A caracterização química desses substratos indicou um teor de lignina de 44,8% e 29,0%, respectivamente. Reações de peroxidação de ácido linoléico iniciadas pelos sistemas em estudo mostraram que todos foram efetivos para esse propósito, sendo que as maiores taxas de consumo de oxigênio durante essas reações foram observadas nos meios reacionais que continham Fe2+ em solução. O CLC inibiu as reações de peroxidação quando adicionado ao meio reacional em concentraçãoes maiores do que 0,3 mg/mL. Entretanto, reações prolongadas por 72 h com o CLC numa concentração inicial de 1 mg/mL indicaram que ele sofreu despolimerização. As vias de degradação da lignina contida no CLC ou na madeira de E. grandis moída envolveram a despolimerização da molécula, ou simplesmente a oxidação das cadeias laterais e das estruturas fenólicas livres. Quando o sistema foi baseado na ação de MnP/Mn+2/H2O2/ácido linoléico, foram comprovadas vias de degradação da lignina que envolveram desde a simples oxidação do carbono-α até a quebra de ligações do tipo β-O-4 e/ou entre os carbonos α e β. Os resultados obtidos corroboraram dados anteriormente publicados para a ação de C. subvermispora in vivo. Uma exceção foi à observação da reação de simples oxidação do Cα nos sistemas in vitro, que havia sido descartada em trabalhos anteriores que se basearam na caracterização de lignina contida em madeira biotratada por C. subvermispora (sistema in vivo). Os resultados permitiram concluir que vários sistemas miméticos podem iniciar a peroxidação de ácido linoléico in vitro. Quando essas reações foram conduzidas na presença de lignina (CLC ou E. grandis moído) foi possível observar transformações importantes na estrutura da lignina que eventualmente poderiam ser exploradas, por exemplo, em etapas de processos de branqueamento de polpas kraft. / The white-rot fungus Ceriporiopsis subvermispora degrades lignin selectively, being one of the most studied species in biopulping. Biopulping consists of a biological treatment of wood that precedes conventional pulping stages. The process can provide up to 30-40% of energy savings in mechanical pulping. To degrade lignin, this fungus secretes the enzyme manganese-peroxidase (MnP), which needs carboxylic acids to chelate and transport Mn3+ ions formed in the catalytic cycle of the enzyme. The chelate-Mn3+ complex is able to degrade phenolic structures of lignin; however, can also initiate lipid peroxidation reactions generating peroxyl radicals that are able to degrade nonphenolic lignin structures. Based on this background, the aim of this work was to evaluate lignin degradation through linoleic acid peroxidation reactions initiated by extracellular metabolites recovered from C. subvermispora cultures. Some biomimetic systems based on Fe2+ and Mn3+ ions were also evaluated as initiators of such reactions. The lignin degradation was studied in reaction systems composed of MnP/Mn+2/H2O2, Fe3+-reducing compounds produced during wood biodegradation by C. subvermispora, Mn+3 or Fe+2 ions, all of them in the presence of linoleic acid. To perform this study, MnP and Fe3+-reducing compounds were initially produced in C. subvermispora cultures. Two different reaction substrates were also prepared. One was a lignin-carbohydrate complex (LCC) and, the other, was a complete lignocellulosic material that was milled and extracted to remove the extractive fraction. Both substrates were prepared from Eucalyptus grandis wood. The chemical characterization of the substrates showed 44.8 % and 29.0 % of total lignin, respectively. Linoleic acid peroxidation reactions initiated by the studied systems showed that all of them were efficient on this purpose. The highest oxygen consumption rates during these reactions were observed in the Fe2+ initiated reactions. The LCC inhibited the peroxidation reactions when added to the reaction medium at concentrations higher than 0.3 mg/mL. However, prolonging the reactions up to 72h with LCC at 1 mg/mL showed that it was depolymerized. The lignin degradation routes involved depolymerization or simple side chain and free-phenolic structure oxidations. When the reactive system was based on the use of MnP/Mn+2/H2O2/linoleic acid, some lignin degradation routes were demonstrated and they included Cα-oxidation, as well as β-O-4 and/or Cα-Cβ cleavages. These results corroborate previous findings published for the action of C. subvermispora in vivo. One exception was the simple Cα oxidation that was observed for the in vitro reactions, but was ruled out by previous works that were based on the characterization of residual lignins extracted from wood samples biotreated by C. subvermispora (in vivo system). The current results permitted to conclude that several mimetic systems were able to initiate linoleic acid peroxidation in vitro. When these reactions were performed in the presence of lignin (LCC or milled E. grandis) it was possible to show the occurrence of several lignin transformation reactions that could be exploited, for example, in pulp bleaching processes.
8

Optimizing vanadium dispersion in mesoporous silicas using different anchoring metal ions for C-C catalytic bond cleavage in lignin degradation / Optimisation de la dispersion du vanadium dans les silices médoporeuses par effet d'angrage chimique : dégradation catalytique de la lignine

Lu, Xinnan 21 October 2017 (has links)
Dans le cadre du développement durable, les procédés rapides, propres et peu énergivores sont très recherchés particulièrement en chimie pour les réactions d’oxydation. A part les solutions de génie des procédés, la catalyse est l’un des meilleurs atouts pour améliorer le processus. Le vanadium étant l’un des meilleurs métaux catalytiques pour de tels réactions, nous avions à nous attaquer son problème de relargage dans le milieu réactionnel en vue d’applications acceptables pour l’environnement. Nous proposons donc dans cette thèse des catalyseurs au vanadium fixé à l’intérieur des nano pores de silices mésoporeuses hexagonales de type MCM-41. La grande dispersion et la rétention du vanadium sont promues grâce à la présence d’ion d’ancrage : Al(III), Ti(IV), Zr(IV) and Ce(IV). Une grande variété de catalyseurs de type V-(Al/Ti/Zr/Ce)-MCM-41 ont été préparés à partir de trois méthodes de synthèse: l’une, ultra-rapide en une étape assistée par micro-onde, la seconde à étapes séquentielles multiples mettant en œuvre une technique de pochoir moléculaire et la troisième à nombre d’étapes réduites utilisant un traitement thermique partiel d’une surface préalablement organosilylée avant le greffage des métaux. Un large panel de techniques physicochimiques fut appliqué à la caractérisation de ces solides avec une attention particulière portée à l’analyse de la bande de transfert de charge ligand-métal du vanadium au degré d’oxydation +5 dont le décalage vers le bleu est corrélé à la taille des clusters d’oxyde de ces ions. La rétention du vanadium dans le méthanol a été corrélée à la dispersion du vanadium comme la dégradation à l’air du 1,2-diphényle-2-méthoxyéthanol. Ce substrat fut choisi comme modèle pour étudier la dégradation de la lignine par clivage C-C ou C-O. Notons que ce bio-polymère produit du phénoxypropanol methylé bio-sourcé utilisé dans les bio-carburants et comme précurseur en chimie fine. Dans le cas présent, un balayage à haut débit de la dégradation de cette molécule mettant en œuvre 96 mini-réacteurs en parallèle a permis de sélectionner le solvant, le métal d’ancrage et la teneure des deux métaux donnant la plus haute conversion. Contrairement aux catalyseurs homogènes, nos catalyseurs présentent une très haute sélectivité en clivage C-C. / The search for practical large-scale, fast, clean and energy saving chemical processes are highly regarded in the frame of a sustainable development, particularly for the most problematic oxidation reactions. Apart from chemical engineering solutions, improving the process using heterogeneous catalysis is one of the most adapted solution. Vanadium being considered the best metal for such kind of reactions, one had to tackle the problem of its high dispersion on a support to minimize its high propensity for leaching and to optimize its stability for practicable, safe and clean uses. In the present thesis, vanadium is supported inside the nanopores of a mesoporous silica of MCM-41 type where the high dispersion is assisted by the presence of anchoring ions such as Al(III), Ti(IV), Zr(IV) and Ce(IV) ions. A large set of V-(Al/Ti/Zr/Ce)-MCM-41 catalysts was prepared according to three different methods of preparation: i) ultra-fast one-pot synthesis protocol using the assistance of microwave, ii) post-synthesis modification using molecular stencil patterning (MSP) technique and iii) partial thermal treatment (PTT) of the organo-silylated support. The catalysts were characterized thoroughly using a panel of physical techniques and, particularly, the blue shift of the optical gap measured from the vanadium charge transfer band known to correlated with the dispersion of the metal. In complement, the stability was tested from metal leaching using methanol as a corrosive solvent while their catalytic reactivity was estimated in the aerobic oxidation of 1,2-diphenyl-2-methoxyethanol. This is a model reaction that simulates the oxidative C-C bond cleavage in lignin, the most difficult and crucial step in the degradation of this biopolymer, then producing in a clean way valuable methoxylated phenoxy propanol units useful for biomass fuels or bio-sourced precursors for fine chemistry. A high throughput screening approach was applied to test this aerobic oxidation reaction running over 96 reactors in parallel at the same temperature and sorting out the best catalysts with the most suitable anchoring ions and metal loading for the highest catalytic efficiency. / 在可持续发展的背景下,对于清洁高效节能可行的大规模化工过程尤其是存在诸多问题的氧化反应过程的探索倍受瞩目。除化学工程解决方案之外,通过多相催化来改进反应过程也是最可行的途径之一。钒被认为是最适合于催化此类反应的金属之一,其亟待解决的问题是实现钒在载体上的高度分散,并最大限度地降低其浸出倾向,改善其稳定性,从而实现对其安全清洁有效的利用。本文提出将钒负载于MCM-41型六方介孔二氧化硅的纳米孔道中,通过锚定离子如Al(III)、 Ti(IV)、Zr(IV)、Ce(IV)离子的存在促进钒的高度分散和固载。采用三种不同的方法制备了一系列V-(Al/Ti/Zr/Ce)-MCM-41催化剂:1、超快微波一步合成法,2、使用分子复刻版技术改性的后嫁接法,3、对有机硅烷化载体进行部分热处理改性的后嫁接法。通过一系列物理化学技术对合成的催化剂进行了充分表征,特别是对与金属分散度相关的钒的电荷跃迁带的测量和与其对应的光谱带隙蓝移进行了分析。随后,以甲醇作为腐蚀溶剂对合成的钒催化剂进行了金属析出的稳定性测试。通过一种木质素模型化合物1,2-diphenyl-2-methoxyethanol的需氧氧化反应测试了所合成负载型钒催化剂的催化活性。在相同温度及反应条件下,用96通道高通量微反应器技术评价了所制催化剂对该反应的催化性能,筛选出具有最高催化效率的负载型钒催化剂及其最适合的锚定离子。该反应中的碳-碳键裂解反应是木质素降解的最关键也是最困难的步骤之一,可通过这类生物聚合物的降解以清洁的方式生产有用的生物质燃料或生物来源高附加值精细化学品前驱体。
9

Functional Genomics of Xenobiotic Detoxifying Fungal Cytochrome P450 System

Subramanian, Venkataramanan 23 April 2008 (has links)
No description available.
10

<b>Molecular investigation of the multi-phase photochemistry of environmental aquatic systems</b>

Maria V Misovich (17553087) 08 December 2023 (has links)
<p dir="ltr">The chemical constituents of terrestrial and atmospheric waters originate from biomass burning, fertilizer runoff, and anthropogenic activity, among other sources, and their multi-phase chemistry is complex. Sunlight plays an essential role in aquatic chemistry. Photosensitizers in terrestrial and atmospheric waters absorb light to form highly reactive species such as triplet excited carbon (<sup>3</sup>C*), hydroxyl radical (•OH), and singlet oxygen (<sup>1</sup>O<sub>2</sub>), driving the photochemical transformations of dissolved organic matter (DOM) in the aqueous phase. Of note, these reactive species transform DOM compounds that do not undergo direct photolysis. DOM frequently undergoes a change in optical properties following photochemical processing, with implications for air quality, water quality, and human and animal health. The presence of inorganic minerals, such as the fertilizer compound struvite, in terrestrial or atmospheric waters introduces further complexity and impacts the photochemical processes that occur. Simplified proxy systems are created in the laboratory to simulate aquatic photochemical processes and evaluate the formation and/or photodegradation of photoproducts. These mixtures typically consist of a representative organic carbon (OC) compound and a photosensitizer, along with struvite or another inorganic mineral.</p>

Page generated in 0.1413 seconds