Spelling suggestions: "subject:"pharmaceutical preparations"" "subject:"pharmaceutical reparations""
91 |
Biomimetic Synthetic Tissue Scaffolds for Bone Regeneration: A DissertationFilion Potts, Tera M. 21 July 2011 (has links)
Injury to bone is one of the most prevalent and costly medical conditions. Clinical treatment of volumetric bone loss or hard-to-heal bony lesions often requires the use of proper bone grafting materials, with or without adjuvant anabolic therapeutics. Despite significant problems associated with autografting (donor site morbidity, limited supplies) and allografting (disease transmissions, high graft failure rates) procedures, synthetic bone grafts remain the least utilized clinically. Existing synthetic orthopaedic biomaterials rarely possess a combination of bone-like structural and biochemical properties required for robust osteointegration, scalable and user-friendly characteristics indispensable for successful clinical translations. This thesis tests the hypothesis that by recapitulating key structural elements and biochemical components of bone in 3- and 2-dimensional biomaterials, scalable synthetic bone grafts can be designed to enable expedited healing of hard-to-heal volumetric bone loss. Specifically, FlexBone, a 3-dimensional hydrogel scaffold encapsulating 50 wt% of structurally well integrated nanocrylstalline hydroxyapatite, the main inorganic component of bone, was developed. The large surface area of nanocrystalline hydroxyapatite combined with its intrinsic affinity to proteins and its excellent structural integration with the hydrogel matrix enabled FlexBone to both sequester endogenous protein signals upon press-fitting into an area of skeletal defect and to deliver exogenous protein therapeutics in a localized and sustained manner. We demonstrated that FlexBone enabled the functional healing of critical-size long bone defects in rats in 8 – 12 weeks with the addition of a very low dose of osteogenic growth factor BMP-2/7. This promising synthetic bone graft is now being explored for the delivery of multiple growth factors to expedite the healing of diabetic bony lesions. In addition, a 2-dimensional electrospun cellulose fibrous mesh was chemically modified with sulfate residues to mimic sulfated polysaccharide ECM components of skeletal tissues to enabled progenitor cell attachment and differentiation as well as controlled retention and localized/sustained delivery of protein therapeutics. This sulfated fibrous mesh is currently explored as synthetic periosteum to augment the osteointegration of devitalized structural allografts. Finally, a rat subcutaneous implantation model developed to examine the biocompatibility of newly developed biodegradable shape memory polymer bone substitutes is also presented.
|
92 |
Structural Studies of the Anti-HIV Human Protein APOBEC3G Catalytic Domain: A DissertationShandilya, Shivender 12 August 2011 (has links)
HIV/AIDS is a disease of grave global importance with over 33 million people infected world-wide and nearly 2 million deaths each year. The rapid emergence of drug resistance, due to viral mutation, renders anti-retroviral drug candidates ineffective with alarming speed and regularity. Instead of targeting mutation prone viral proteins, an alternative approach is to target host proteins that interact with viral proteins and are critical for the HIV life-cycle. APOBEC3G is a host anti-HIV restriction factor that can exert tremendous negative pressure by hypermutating the viral genome and has the potential to be a promising candidate for anti-retroviral therapeutic research.
The work presented in this thesis is focused on investigating the A3G catalytic domain structure and implications of various observed structural features for biological function. High-resolution crystal structures of the A3G catalytic domain were solved using data from macromolecular X-ray crystallographic experiments, revealing a novel intermolecular zinc coordinating motif unique to A3G. Major intermolecular interfaces observed in the crystal structure were investigated for relevance to biochemical activity and biological function.
Co-crystallization with a small-molecule A3G inhibitor, discovered using high-throughput screening assays, revealed a cysteine residue near the active site that is critical for inhibition of catalytic activity by catechol moieties. The serendipitous discovery of covalent interactions between this inhibitor and a surface cysteine residue led to further biochemical experiments that revealed the other cysteine, near the active site, to be critical for inhibition.
Computational modeling was used to propose a steric-hinderance based mechanism of action that was supported by mutational experiments. Structures of other human APOBEC3 homologs were modeled using in-silico methods examined for similarities and differences with A3G catalytic domain crystal structures. Comparisons based on these homology models suggest putative structural features that may endow substrate specificity and other characteristics to the APOBEC3 family members.
|
93 |
Exploring Molecular Mechanisms of Drug Resistance in HIV-1 Protease through Biochemical and Biophysical Studies: A DissertationBandaranayake, Rajintha M. 20 May 2010 (has links)
The human immunodeficiency virus type-1 (HIV-1) is the leading cause of acquired immunodeficiency syndrome (AIDS) in the world. As there is no cure currently available to treat HIV-1 infections or AIDS, the major focus of drug development efforts has been to target viral replication in an effort to slow down the progression of the infection to AIDS. The aspartyl protease of HIV-1 is an important component in the viral replication cycle and thus, has been an important anti-HIV-1 drug target. Currently there are nine protease inhibitors (PIs) that are being used successfully as a part of highly active antiretroviral therapy (HAART). However, as is with all HIV-1 drug targets, the emergence of drug resistance substitutions within protease is a major obstacle in the use of PIs. Understanding how amino acid substitutions within protease confer drug resistance is key to develop new PIs that are not influenced by resistance mutations. Thus, the primary focus of my dissertation research was to understand the molecular basis for drug resistance caused by some of these resistance substitutions.
Until recently, the genetic diversity of the HIV-1 genome was not considered to be important in formulating treatment strategies. However, as the prevalence of HIV-1 continues, the variability of the HIV-1 genome has now been identified as an important factor in how the virus spreads as well as how fast the infection progresses to AIDS. Clinical studies have also revealed that the pathway to protease inhibitor resistance can vary between HIV-1 clades. Therefore, in studying the molecular basis of drug resistance in HIV-1 protease, I have also attempted to understand how genetic variability in HIV-1 protease contributes to PI resistance.
In Chapters II, III and Appendix 1, I have examined how clade specific amino acid variations within HIV-1 CRF01_AE and clade C protease affect enzyme structure and activity. Furthermore, I have examined how these sequence variations, which are predominantly outside the active site, contribute to inhibitor resistance in comparison to clade B protease. With the results presented in Chapter II, I was able to show that sequence variations within CRF01_AE protease resulted in structural changes within the protease that might influence enzyme activity. In Chapter III, I focused on how sequence variations in CRF01_AE influence protease activity and inhibitor binding in comparison to clade B protease. Enzyme kinetics data showed that the CRF01-AE had reduced catalytic turnover rates when compared to clade B protease. Binding data also indicated that CRF01_AE protease had an inherent weaker affinity for the PIs nelfinavir (NFV) and darunavir (DRV). In work described in Chapter III, I have also examined the different pathways to NFV resistance seen in CRF01_AE and clade B protease. Using x-ray crystallographic studies I have shown the molecular mechanism by which the two different pathways confer NFV resistance. Furthermore, I provide a rational for why different resistance pathways might emerge in the two clades. In Appendix I, I present results from a parallel study carried out on clade C protease.
In Chapter IV, I have examined the role of residue 50 in HIV-1 protease in modulating inhibitor binding. Patients failing amprevavir (APV) and DRV therapy often develop the I50V substitution while the I50L substitution is often observed in patients failing atazanavir (ATV) therapy. This indicates that by making subtle changes at residue 50 the protease is able to confer differential PI resistance. With binding data presented in this chapter I have shown that substitutions at residue 50 change the susceptibility profiles of APV, DRV and ATV. Furthermore, from analyses of protease-inhibitor complexes, I have described structural insights into how substitutions at residue 50 can modulate inhibitor binding.
This thesis presents results that reveal mechanistic insights into how a number of resistance substitutions within protease confer drug resistance. The results on non-B clade proteases demonstrate that clade specific sequence variations play a role in modulating enzyme activity and influence the pathway taken to confer PI resistance. Furthermore, the results provide structural insights into how amino acid substitutions outside the active site effectively alter inhibitor binding.
|
94 |
Diastereoselective acylation of trans-2-substituted-cyclohexanols and glycosidase inhibition studiesSamoshin, Andrey V. 01 January 2011 (has links)
Part I. The reaction between chiral acyl chlorides and trans -2-substituted-cyclohexanols proceeds diastereoselectively, i.e. produces mixtures of unequal amounts of diastereomers. We found for the first time that addition of pyridine or diisopropylethylamine accelerates the acylation, and unexpectedly for some substituents (RX) may completely invert its diastereoselectivity. These observations have been rationalized in terms of a stereoselective intramolecular assistance by the RX group to the acylation of the neighboring hydroxyl ("bait-and-hook" mechanism). A series of trans -2-substituted-cyclohexanols were synthesized and acylated with a racemic reagent in presence and absence of pyridine. The results showed that the presence of a nucleophilic group on the second carbon allowed for the preferred formation of one of the diastereomers in the absence of pyridine. However, in the presence of pyridine, the diastereoselectivity would inverse, and the reaction would favor the formation of the other diastereomer. To test the intramolecular acyl transfer hypothesis in detail a series of thioglucosides has been synthesized. Part II. The synthesized thioglucosides were tested as inhibitors of fungal glycosidases. Two compounds showed greater than 80% inhibition values in excess of the activity of β-D-glucosidases. More interestingly, the same compounds showed a marked enhancement of α-D-galactosidase activity by as much as 35%.
|
95 |
Design and applications of antibody mimics against epidermal growth factor receptorSachdeva, Sameer 01 January 2015 (has links)
Antibodies have been widely used as reagents, homing devices, diagnostics and as therapeutic agents against different targets in clinic and research. Recently a number of monoclonal antibodies and their drug conjugates have been approved as therapeutic agents. While these molecules have great potential in various applications and therapeutics, extensive use of full length antibodies has been hampered by the high cost of production, large molecular weight and limited ability to penetrate tumor tissues. These limitations have led to the research for antibody alternatives with lower molecular weight, similar binding and affinity properties but without the lengthy and complicate process of generating antibodies. Some examples of these efforts include minibodies, fragment antigen binding (FAB), ScFv, and synthetic antibody mimics. Although these antibody alternatives have low molecular weight, as compared to the antibody, they are either derived from full size antibodies or by a long and tedious in vitro screening process. Therefore, a rational design of molecules that mimic antibody binding is a logical first step for the development of antibody alternatives. In this study, a novel approach to design antibody mimics without involving massive experimental screening was developed. The design was developed by mapping and identifying EGFR epitope region where Cetuximab CDR binds and modifying sequences using knob-socket computational model. The binding of antibody mimics were first analyzed by using MOE to obtain the binding energy, total and preserved interactions as compared to the interactions between EGFR and Cetuximab. Further, the designed antibody mimics were used to form a peptide drug conjugate (PDC). Antibody mimics were found to specifically bind and internalized by EGFR overexpressing cell lines with three to four folds higher than control cells. Antibody mimics showed binding in nanomolar range with Pep11 with binding affinity (K D ) of 252nM as shown by SPR studies. EGFR phosphorylation studies also showed that antibody mimics were able to inhibit the binding of EGF to the EGFR in a similar fashion as Cetuximab. Specific binding, affinity and functional activity of the antibody mimics demonstrated that these peptides were able to mimic all the three important characteristics of antibodies. Peptide drug conjugate (PDC) was found to be around 10 fold more potent as compared to the drug itself towards EGFR overexpressed cancer cells. PDC also showed more than 100 fold low potency against control cells. These studies demonstrated that a rational design of molecules to mimic the antibody characteristics is feasible. The antibody mimics were also successfully applied and used as targeting moiety to design peptide drug conjugates for efficient targeted drug delivery system than antibody drug conjugates.
|
96 |
Synthesis and biophysical evaluation of thiazole orange derivatives as DNA binding ligandsYang, Dazhou 01 January 2014 (has links)
Guanine-rich telomeric DNA at the end of chromosomes can form a unique DNA tertiary structure - G-quadruplex, which is known to inhibit the binding of telomerase to telomeric regions in cancer cells and thus regulate unrestricted cancer cell growth. Hence, G-quadruplex DNA has recently become a promising target in oncology. The formation of G-quadruplex structures is greatly facilitated by G-quadruplex binding ligands such as Thiazole orange (TO). Compared with other G-quadruplex binding ligands, TO has an intriguing tunable fluorescence property. Upon binding to DNA, the fluorescence of TO can increase up to 1000-fold, making it an attractive probe for studying ligand-DNA interactions. However, the poor binding affinity and minimal binding selectivity towards different DNA conformations greatly limit its applications. My research focuses on developing G-quadruplex binding ligands using TO as a scaffold. In the first part of this work, we investigated the feasibility of increasing the TO binding affinity and selectivity toward G-quadruplex DNA by introducing side chains to the molecule. TO derivatives containing various side chains were successfully synthesized and characterized. Biophysical and biochemical studies with duplex and G-quadruplex DNA showed that tethering side chains to TO is an effective approach to tune its ability of binding to duplex or G-quadruplex DNA. Possible binding modes of the effective derivatives were studied using AutoDock. Their inhibition of telomerase activities was studied using the TRAP assay. The cytotoxicity of these derivatives toward three cancer cell lines was also investigated using the MTS assay. The second part of this work focuses on development of TO-based G-quadruplex DNA binding ligands that can bind to DNA via the dual recognition mode. TO was tethered with pyrene, naphthalene diimide, and anthraquinone respectively to yield three novel conjugates. Further investigation suggested that the conjugate of TO with naphthalene diimide (TO-NF) gave the best G-quadruplex binding affinity. It binds to G-quadruplex DNA via the end stack mode and strongly inhibits the telomerase activity. The cytotoxicity results will also be discussed in this presentation.
|
97 |
Overexpression of Human Aryl Hydrocarbon Receptor in <i> E.coli</i> Using Two Different Solubility Enhancing TagsTejomurthula, Sravanthi 01 January 2017 (has links)
Dioxins such as TCDD are environment pollutants whose toxic effects are mediated via aryl hydrocarbon receptor (AhR) signaling pathway. AhR is a ligand sensitive transcription factor. The unbound AhR resides in cytoplasm as a complex containing p23, Hsp90 and XAP2. Upon ligand binding, AhR undergoes conformational change and translocates into the nucleus. Once the AhR dimerizes with AhR nuclear translocator (Arnt), the chaperone proteins in the complex get dissociated followed by the activation of transcription of various genes such as CYP1A1 and CYP1A2 by AhR-ARNT heterodimer. Various cancers have altered levels of AhR in the absence of ligand. Our current knowledge is only limited in the regulation of AhR protein levels in its ligand bound state. However, the mechanism involved in the regulation of AhR protein levels in the absence of ligand is still unknown. To make the study of AhR signaling pathway possible, our lab has been working on the expression of various AhR constructs in E.coli using recombinant DNA technology. As AhR forms inclusion bodies due to its poor solubility in the cytoplasm of the host bacteria, it is tagged as a “difficult to express” protein. Therefore, it is challenging to generate functional recombinant AhR protein. My thesis documents the expression of human AhR construct amino acid 108-400 using two different solubility enhancing tags (thioredoxin and maltose binding protein). Western blot data revealed that the soluble expression of the human AhR construct by thioredoxin solubility enhancing tag has outperformed the other.
|
98 |
Computational prediction of enhanced solubility of poorly aqueous soluble drugs prepared by hot melt methodKondepudi, Karthik Chalam 01 January 2015 (has links)
Solubility is the concentration of a solute in a saturated solution at a given temperature and pressure. Solubility of a drug in aqueous media is a pre-requisite to achieve desired concentration of a drug in the systemic circulation. Low aqueous solubility is a major problem encountered with formulation development of recently designed new chemical entities. Solubility of poorly soluble drugs is enhanced by physical and chemical modifications of drug. Shake flask method is the most commonly used experimental method to determine solubility. However, this method has several limitations. A single solubility experiment can go on for several days and even weeks. Besides this, a large amount of drug is required to carry out the experiment. In order to overcome this and make initial screening easier, computational method can be used to predict solubility. In this study, the solubility of 12 small molecules of BCS class II having a wide range of physicochemical properties were studied to enhance their solubility by hot melt method. Three different grades of PEG (1450, 4000, 8000), PVP K17 and Urea as the hydrophilic carriers was employed for the solubility enhancement. The overall objective of this investigation is to develop a model that could estimate enhanced solubility using physicochemical descriptors. Multiple linear regression (MLR), a statistical tool, was used to generate a equation for the solubility by correlating physicochemical properties of the drug like- molecular size, logP, pKa, HBA, HBD, melting point, polar surface area, and number of rotatable bonds. Solubility enhancement is also influenced by the carrier used, we included the physicochemical properties of the carriers like molecular weight and solubility parameter in the development of the model. MLR analysis model, resulted in an equation, where, Log solubility = 5.982-0.010 MW (drug)-0.452 LogP-0.320 HBA-0.095 ?solubility parameter+0.015 MV. A regression analysis yielded a good fit with a regression value (adjusted R2) of 0.74. The model has been validated by leave one out method. This model has the potential to estimate the solubility of a physically modified drug in screening stages of drug development.
|
99 |
Apparent dissolution rate enhancement of poorly-water soluble drugs by adsorption techniqueVutukuru, Naresh Kumar Reddy 01 January 2015 (has links)
Nearly 70% of the new chemical entities (NCE’s) discovered are poorly-water soluble drugs and the number of poorly-water soluble drugs are increasing rapidly in the drug discovery. Most of the NCE’s are lipophilic and have dissolution rate issues. Low dissolution rate of the drugs result in poor bioavailability. To overcome poor bioavailability, an adsorption technique is developed to enhance the apparent dissolution rate of poorly-water soluble drugs. In this study, two poor-water soluble model drugs, ibuprofen and carvedilol were used. Methanol, DMF, DMSO and PEG400 were used as solvents and microcrystalline cellulose was used as an adsorbent. Pure model drugs, physical mixtures and prepared composites were characterized by using FTIR, DSC, XRD and dissolution testing. Results showed that the composites prepared with solvents DMF, DMSO and PEG400 showed enhancement in dissolution rates of two model drugs. Characterization of the composites prepared by using non-volatile solvents showed successful conversion of crystalline model drugs into solution state. Whereas, composites prepared by using volatile solvent showed similar results like physical mixtures and pure drug. Ibuprofen composites containing DMF, DMSO and PEG400 showed 9.4, 7.4 and 1.8 folds of increase in apparent dissolution rate, respectively. Whereas carvedilol composites containing DMF and DMSO showed 11.52 and 3.4 folds of increase in apparent dissolution rate. Four months of stability study were conducted on prepared composites at both 40°C and room temperature. It was observed that prepared composites were stable after 4 months and exhibited similar dissolution rate. In conclusion, the use of non-volatile solvents disrupted the crystal structure but also retained the drug in solution state which in turn enhanced the apparent dissolution rate of model drugs used. From the observed results we conclude that this method has a potential to replace existing techniques to enhance the apparent dissolution rate of the drug and stability of the composites.
|
100 |
A novel intracellular protein delivery system - Magnesium phosphate nanoparticles with cationic lipid coating for catalase intracellular deliveryFang, Yunzhou 01 January 2014 (has links)
Protein therapeutics have great potential in treating human disease, especially for those caused by alternations in the functions of intracellular proteins. However, clinical use of protein by intracellular delivery has been hampered by the instability due to proteins' physicochemical properties, and some barriers in the delivery pathway. This study was to prepare and test a novel intracellular protein delivery system - magnesium phosphate nanoparticles with cationic lipid coating for catalase intracellular delivery (LP MgP NP-CAT), and investigate whether it can release the encapsulated catalase to cytosol. LP MgP NP-CAT was designed, prepared and characterized, showing that it had an average diameter around 300 nm and zeta potential around +40mV. The pH - triggered catalase release from LP MgP NP-CAT was determined by a hydrogen peroxide degradation assay, where the concentration of remaining hydrogen peroxide was measured by UV-Vis spectroscopy, indicating catalase was released in response to the drop of pH, which was confirmed by the morphology change of LP MgP NP-CAT observed by transmission electron microscopy. The in vitro catalase release behavior was conducted on MCF-7 cells and EA.hy926 cells. LP MgP NP-CAT was delivered into MCF-7 cells and the release behavior was determined by the resultant resistance of the cells against hydrogen peroxide using MTS cell viability assay. The delivery of LP MgP NP-CAT into EA.hy926 cells was determined by the decrease of the reactive oxygen species level. Both of the studies showed that catalase was successfully delivered and released which is supported by the reduction of hydrogen peroxide.
|
Page generated in 0.1234 seconds