• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 50
  • 37
  • 10
  • 6
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 293
  • 293
  • 59
  • 55
  • 48
  • 47
  • 41
  • 41
  • 38
  • 30
  • 30
  • 27
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Gene Expression and Phenotype Response of <em>Drosophila melanogaster</em> to Selection.

McDonald, Kenneth W. 12 August 2008 (has links)
The evolution of phenotypic plasticity is currently a topic of paramount interest in a diverse field of sub-disciplines. Salience is placed by all fields in describing the interaction of selection and phenotypic plasticity and the consequence of this interaction more broadly on evolution. Lacking in the discussion is substantial empirical description of genotype/phenotype interactions that by definition constitute the plastic response to novel and stressful environments. Here, I present empirical observations that bring the interaction of genotype and phenotype into focus. Drosophila melanogaster populations subjected to selection for tolerance to low food or high alcohol conditions each exhibited an enhancement of adaptive plasticity consistent with predictions associated broadly with the Baldwin Effect. Furthermore, each appears to have followed different courses of regulatory modification to achieve these ends. Broadly implicit in the results is the observation that previous exposure of the population to the conditions of induction may dictate the course of subsequent evolution of the phenotype.
82

Exploring and analyzing omics using bioinformatics tools and techniques

Parida, Mrutyunjaya 01 May 2018 (has links)
During the Human Genome Project the first hundred billion bases were sequenced in four years, however, the second hundred billion bases were sequenced in four months (NHGRI, 2013). As efforts were made to improve every aspect of sequencing in this project, cost became inversely proportional to the speed (NHGRI, 2013). Human Genome Project ended in April 2003 but research in faster and cheaper ways to sequence the DNA is active to date (NHGRI, 2013). On the one hand, these advancements have allowed the convenient and unbiased generation and interrogation of a variety of omics datasets; on the other hand, they have substantially contributed towards the ever-increasing size of biological data. Therefore, informatics techniques are indispensable tools in the field of biology and medicine due to their ability to efficiently store and probe large datasets. Bioinformatics is a specialized domain under informatics that focusses on biological data storage, organization and analysis (NHGRI, 2013). Here, I have applied informatics approaches such as database designing and web development in the context of biological datasets or bioinformatics, to create a novel web-based resource that allows users to explore the comprehensive transcriptome of common aquatic tunicate named Oikopleura dioica (O .dioica), and access their associated annotations across key developmental time points, conveniently. This unique resource will substantially contribute towards studies on development, evolution and genetics of chordates using O. dioica as a model. Mendelian or single-gene disorders such as cystic fibrosis, sickle-cell anemia, Huntington’s disease, and Rett’s syndrome run across generations in families (Chial, 2008). Allelic variations associated with Mendelian disorders primarily reside in the protein-coding regions of the genome, collectively called an exome (Stenson et al., 2009). Therefore, sequencing of exome rather than whole genome is an efficient and practical approach to discover etiologic variants in our genome (Bamshad et al., 2011). Renal agenesis (RA) is a severe form of congenital anomalies of the kidney and urinary tract (CAKUT) where children are born with one (unilateral renal agenesis) or no kidneys (bilateral renal agenesis) (Brophy et al., 2017; Yalavarthy & Parikh, 2003). In this study, we have applied exome-sequencing technique to selective human patients in a renal agenesis (RA) pedigree that followed a Mendelian mode of disease transmission. Exome sequencing and molecular techniques combined with my bioinformatics analysis has led to the discovery of a novel RA gene called GREB1L (Brophy et al., 2017). In this study, we have successfully demonstrated the validation of exome sequencing and bioinformatics techniques to narrow down disease-associated mutations in human genome. Additionally, the results from this study has substantially contributed towards understanding the molecular basis of CAKUT. Discovery of novel etiologic variants will enhance our understanding of human diseases and development. High-throughput sequencing technique called RNA-Seq has revolutionized the field of transcriptome analysis (Z. Wang, Gerstein, & Snyder, 2009). Concisely, a library of cDNA is prepared from a RNA sample using an enzyme called reverse transcriptase (Nottingham et al., 2016). Next, the cDNA is fragmented, sequenced using a sequencing platform of choice and mapped to a reference genome, assembled transcriptome, or assembled de novo to generate a transcriptome (Grabherr et al., 2011; Nottingham et al., 2016). Mapping allows detection of high-resolution transcript boundaries, quantification of transcript expression and identification of novel transcripts in the genome. We have applied RNA-Seq to analyze the gene expression patterns in water flea otherwise known as D. pulex to work out the genetic details underlying heavy metal induced stress (unpublished) and predator induced phenotypic plasticity (PIPP) (Rozenberg et al., 2015), independently. My bioinformatics analysis of the RNA-Seq data has facilitated the discovery of key biological processes participating in metal induced stress response and predator induced defense mechanisms in D. pulex. These studies are great additions to the field of ecotoxicogenomics, phenotypic plasticity and have aided us in gaining mechanistic insight into the impact of toxicant and predator exposure on D. pulex at a bimolecular level.
83

A Change in Grain? Diet Induced Plasticity in the Generalist Grasshopper Melanoplus differentialis

Culotta, Austin M 20 December 2018 (has links)
Phenotypic plasticity is favored in heterogeneous environments in which alternative phenotypes can exploit alternative resources. However, it’s not clear whether phenotypic plasticity is useful in environments that become more homogenous over an organism’s life cycle. I studied a population of grasshopper Melanoplus differentialis that experiences high resource diversity as nymphs but low resource diversity as adults to determine if individuals can undergo diet-induced morphological plasticity in head shape to increase biting ability and ingestion of hard diets. Insects on a soft diet were larger and had greater bite force than those on a hard diet. Head structures related to chewing ability changed shape with mass, heads became taller and narrower. Scaling relationships among body parts suggested that there wasn’t evidence for tradeoff in allocation to chewing vs. locomotor performance. Results are consistent with the idea that essential adult feeding morphology constrains the advantage of plasticity in feeding structures among nymphs.
84

Étude des mécanismes chromatiniens dans l’adaptation des plantes à la lumière. / Study of chromatin mechanisms in plant adaptation to light.

Fiorucci, Anne-Sophie 30 September 2014 (has links)
Les plantes sont des organismes sessiles qui présentent plusieurs caractéristiques leur permettant de s'adapter rapidement aux variations de conditions environnementales. En particulier la lumière représente une source d’information essentielle utilisée tout au long du cycle de vie pour ajuster leur développement. Cette thèse avait pour objet l’étude de l’impact des mécanismes chromatiniens dans la régulation de l’expression des gènes pouvant influencer l’adaptabilité des plantes aux variations de signaux lumineux, à travers deux types de réponses caractérisées par des échelles de temps différentes chez la plante modèle Arabidopsis thaliana. La première étude portait sur des processus chromatiniens dynamiques participant à la régulation de l’expression génique, et utilisait comme modèle le dé‐étiolement. La triméthylation de la lysine 4 de l’histone H3 (H3K4me3), une modification posttraductionnelle généralement associée à un état transcriptionnel actif a été plus particulièrement étudiée. Afin de mieux connaître cette voie, le gène SWD2‐Like b (S2Lb) a été caractérisé. Il s’agit d’un nouveau partenaire de complexes COMPASS‐like et un déterminant important du niveau global de H3K4me3. L’analyse de plantes dans lesquelles ce gène est inactivé a montré qu’un défaut d’accumulation de H3K4me3 corrélait avec une induction plus faible de gènes de réponse à la lumière au cours du dé‐étiolement. Ces résultats et les nouveaux outils obtenus constituent une base solide pour étudier l’influence de cette marque et des facteurs associés sur la modulation fine de l’expression génique en relation avec d’autres marques chromatiniennes. La seconde étude cherchait à déterminer l’impact des variations épigénétiques sur la capacité des plantes à induire un syndrome d’évitement de l’ombre, une réponse adaptative à des conditions de lumière défavorables produites par des compétiteurs. Un phénotypage à grande échelle dans deux conditions de lumière induisant des réponses opposées a été réalisé sur une population de lignées recombinantes inbred (epiRIL), dans laquelle les variations épigénétiques (méthylation de l’ADN) sont maximisées mais les variations de séquence nucléotidique sont minimes. Une plus grande variation phénotypique ainsi qu’une plus grande amplitude dans la capacité de réponse à l’ombre ont été observées dans la population epiRIL. De plus, une cartographie QTL a permis d’identifier une région au début du chromosome 3 spécifiquement associée à la réponse d’évitement de l’ombre. Bien qu’une caractérisation plus fine soit nécessaire, le locus impliqué pourrait correspondre à une première description de QTL « épigénétique » influençant la plasticité phénotypique des plantes en réponse à une variation des conditions de l’environnement. / Plants are sessile organisms that successfully face variations of the environment by taking advantage of their ability to adapt their physiology and morphology. In particular, light perception constitutes an essential source of information used throughout their life cycle to fine‐tune development. The work presented was aimed at studying the role of chromatin‐associated mechanisms on adaptive responses to light cues at two different timescales in the model plant species Arabidopsis thaliana. In a first part, the role of chromatin dynamics in the regulation of gene expression was assessed during de‐etiolation, a developmental transition of seedlings that is triggered upon the first perception of light. It focused mainly on the trimethylation of histone H3 at lysine 4 (H3K4me3), a post‐translational modification associated with transcriptionally active states. To gain new insights into this pathway, the SWD2‐Like b (S2Lb) gene was characterized and shown to represent a new partner of plant COMPASS‐like complexes and a major determinant of H3K4me3 in A.thaliana. Loss‐of‐function plant lines for the S2Lb gene revealed that a default in H3K4me3 enrichment correlates with impaired inducibility of several light‐responsive genes during de‐etiolation. The findings described here set the bases to investigating how this mark and the associated factors influence the modulation of gene expression in relation with other chromatin marks. The second part of this thesis was aimed at assessing the impact of epigenetic variation on the capacity of plants to undergo the shade‐avoidance response (SAR), an adaptive developmental response to unfavorable light conditions produced by competitors. A population of epigenetic Recombinant Inbred Lines (epiRILs), in which epigenetic variation (DNA cytosine methylation) is maximized and nucleotidic sequence variation is minimized, was used for a large‐scale phenotyping under two light conditions triggering opposite responses. The epiRIL population exhibited larger amplitude of phenotypic variation than wild‐type parents in each condition as well as a wider range of response to shade. A region at the beginning of chromosome 3 was identified by QTL mapping to specifically associate to the SAR. Though it remains to be characterized, the locus involved may represent a first “epigenetic QTL” influencing phenotypic plasticity in response to environmental changes.
85

Ecological Epigenetics of Avian Range Expansions

Kilvitis, Holly J. 16 November 2017 (has links)
In light of human-mediated environmental change, a fundamental goal for biologists is to determine which phenotypic characteristics enable some individuals, populations or species to be more adept at coping with such change, while rendering others more vulnerable. Studying ongoing range expansions provide a unique opportunity to address this question by allowing documentation of how novel environments shape phenotypic variation on ecological timescales. At range-edges, individuals are exposed to strong selective pressures and population genetic challenges (e.g. bottlenecks and/or founder effects), which make genetic adaptation difficult. Nevertheless, certain species, such as the house sparrow (Passer domesticus), seem to thrive in their introduced ranges, despite genetic challenges, resulting in a genetic paradox. Increasing evidence suggests that rapid phenotypic differentiation at range-edges may be facilitated by phenotypic plasticity among individuals. Further, a role for epigenetic mechanisms as molecular drivers of such plasticity—particularly in genetically depauperate populations—has recently garnered empirical support across a broad range of taxa. For my dissertation, I investigated the role of epigenetic mechanisms (i.e. DNA methylation) as a potential mediator of range expansion success in vertebrates. Specifically, I proposed that success or failure at range-edges may be underlain by variation in the capacity for epigenetically-mediated plasticity (i.e. epigenetic potential) and used extant literature on an inherently plastic and highly integrated physiological system (i.e. the HPA-axis) to support this hypothesis (Chapter I). I then tested these ideas empirically by examining the relative contribution of genetic and epigenetic variation to immunological variation in Kenyan house sparrows (Chapter II) and explored whether mediators of neural plasticity (i.e. BDNF) and epigenetic potential (i.e. DNA methyltransferases; DNMTs) varied among populations of Senegalese house sparrows, including the potential for covariation among BDNF, DNMTs and corticosterone (CORT) within individuals (Chapter III). Flexibility in the regulation of glucocorticoids (GCs) via the HPA-axis is crucial for survival at range-edges because (i) GCs act as integrators capable of coordinating diverse physiological and/or behavioral responses and (ii) the HPA-axis contains multiple regulatory checkpoints which may help to buffer organisms from maladaptive responses (via redundancy) while simultaneously allowing for the fine-tuning of phenotypic responses to future stressors contingent on current and past experiences. GC regulatory flexibility can be influenced by (and in some cases have an effect on) variation in the capacity for epigenetic mechanisms to regulate environmentally-induced phenotypic changes (i.e. epigenetic potential). DNMTs are capacitators of epigenetic change, thus provide one such example of how variation in epigenetic potential could arise via genetic (e.g. variation in coding regions of DNMT genes) and/or environmental (e.g. developmental programming of DNMT expression) factors. For my first chapter, I conducted a literature review to explore where within the HPA-axis epigenetic potential was most likely to occur and to demonstrate how such variation could promote/constrain range expansion success via its impact on GC regulatory flexibility. Results from the literature search revealed that within the HPA-axis, evidence for epigenetic regulation was highest for receptors, suggesting that variation in epigenetic potential of these targets may be most impactful for variation in GC regulatory flexibility. Using a physiological regulatory network (PRN) framework, I showed how variation in epigenetic potential can modify plasticity of PRN states by altering the regulatory relationships (e.g. connectivity) between HPA elements (e.g. GCs as central hubs) and other physiological/behavioral traits (e.g. subnetworks). As such, I portrayed how genetic forms of epigenetic potential can dictate the upper/lower limits of an individual’s homeostatic range, while environmental forms can act to further titrate GC regulatory flexibility through plasticity of PRN states or stabilization of PRN states. The concept of epigenetic potential in the HPA-axis demonstrates how plasticity at the molecular level can influence plasticity at the whole-organism level, which is likely to be important when coping with novel challenges at range-edges. Among the strongest of selective pressures faced by range-edge populations is exposure to parasites, particularly those with which individuals have little to no evolutionary history. Previous work from our lab on house sparrows in Kenya—site of an ongoing range expansion—revealed that range-edge birds had higher expression of Toll-like receptor 4 (TLR4—a microbial surveillance gene) than birds from the range-core. Moreover, extensive inter-individual variation in genome-wide DNA methylation was found among Kenyan house sparrows, including an inverse relationship between epigenetic diversity and genetic diversity across populations. For my second chapter, I investigated whether these two observations were related, asking whether and how DNA methylation and/or genetic variation within the putative promoter of the TLR4 gene contributed to variation in TLR4 expression. I found that DNA methylation status at CpG1, which varied from only ~73-100%, was a strong predictor of TLR4 expression within individuals. Interestingly, other studies have shown that similar magnitudes of variation in DNA methylation of TLR4 can result in differences in the susceptibility/resistance to bacterial pathogens, thus, it’s plausible that the variation we observed could have functional implications for host defense. I also discovered four genetically linked polymorphisms within the TLR4 promoter that grouped into two general genotypes. We revealed a trend that suggests that genotype differences may influence TLR4 expression, confirmation of which may be possible with increased representation from individuals with the rare genotype. Given that DNA methylation did not vary systematically among populations and evidence for extensive genetic admixture at the Kenyan range-edge, it seems likely that individual-level factors (e.g. genotype, early-life experience, infection history, etc.) may be more predictive of variation in DNA methylation of TLR4 than population-level processes. Coping with novel challenges often requires coordinated adjustments to environmentally-sensitive (i.e. plastic) traits. Findings from my first dissertation chapter, as well as previous research from the Martin lab, revealed that CORT regulation, exploratory behavior and epigenetic mechanisms likely contribute to range expansion success in house sparrows. Within the hippocampus, mediators of neural plasticity such as brain-derived neurotrophic factor (BDNF), play a unique role in the bidirectional regulation of CORT and exploratory behavior, with important implications for hippocampal-dependent learning and memory. Moreover, evidence suggests that the regulatory capacity of CORT and BDNF to influence learning and memory relies heavily on the catalytic capacity of epigenetic modification enzymes—including DNA methyltransferases (DNMTs). For my third chapter, I explored whether previous CORT/behavioral/epigenetic patterns contributed to population-level differences in hippocampal BDNF expression and/or hippocampal expression of DNMTs (mediators of epigenetic potential), including potential covariation among CORT, BDNF and DNMTs within individuals. I collected house sparrows from three populations in Senegal—site of an ongoing range expansion—and measured stressor-induced CORT, hippocampal BDNF, DNMT1 and DNMT3a expression. Given the potential importance of neural plasticity and epigenetic potential for coping with novel challenges, I hypothesized that BDNF and DNMT expression would be highest at the range-edge, while positive covariation would occur between CORT, BDNF and/or DNMT expression within individuals. I found that intermediate levels of CORT resulted in the highest BDNF expression within individuals, suggesting that interactions between CORT and BDNF are likely important for balancing homeostatic and progressive (e.g. cognitive) changes within the hippocampus in response to environmental challenges. I also found that CORT positively covaried with DNMT1 expression in one, but not both, range-edge populations, while the reverse was true at the range-core. These findings suggest that in newly established population, CORT may promote epigenetic potential, allowing for rapid and fine-tuned organism-wide responses to novel stressors, while at the range-core, where stressors are presumably less novel, CORT may inhibit epigenetic potential as a means of diverting resources away from cognitive processes and towards maintaining homeostasis. Altogether, my dissertation has demonstrated how inherently plastic sub-organismal level traits (i.e. molecular, physiological, and neurological) may interact and contribute to range expansion success in an introduced bird. Specifically, my research has not only shown that epigenetic variation can influence an ecologically-relevant trait, but also that variation in the regulatory potential of epigenetic mechanisms can be mediated by intrinsic and extrinsic factors. These studies have expanded our understanding about how epigenetic mechanisms act as regulatory mediators of plasticity at the molecular level and can influence (and be influenced by) variation at multiple phenotypic levels, with implications for whole-organism performance in natural populations. I hope that my work contributes to the field of ecological epigenetics by providing the framework for epigenetic potential as an additional tool for assessing how epigenetic processes contribute to phenotypic outcomes in the face of rapid environmental change.
86

The development of resource polymorphism – Effects of diet, predation risk and population dynamical feedbacks.

Andersson, Jens January 2005 (has links)
<p>This thesis deals with the evolution of individuals within a species adapted to utilize specific resources, i.e. resource polymorphism. Although a well-known phenomenon, the understanding of the mechanisms behind is not complete. Considering the ruling theories, resource polymorphism is suggested to depend on severe competition for resources, the presence of open niches to be occupied leading to a reduction in competition, and disruptive selection where generalist are out-competed due trade-offs in foraging efficiency for different prey. In order to study resource polymorphism, I have used fish as the animal group in focus and the methods I have used range over laboratory experiments, field experiments, literature surveys and theoretical modelling.</p><p>In my work, I have showed that different resource use induces different body shapes and that the rate of change is dependent of the encounter rate of different resources. The induced body changes partly led to increased foraging efficiency but surprisingly I did not find any trade-offs due to specialization. However, when studying predation risk in relation to resource polymorphism, my studies point towards that resource use and predation risk may act as balancing factors in such a way that disruptive selection can take place.</p><p>My work also shows that population feedbacks have to be explored when considering the evolution of resource polymorphism. In pond and field experiments, I found that changes in resource densities affected the actual resource use despite previous adaptations to certain resources. By performing a literature survey, I found that cannibalism indirectly by its effect on population dynamics seems to facilitate the evolution of resource polymorphism. Modelling a size-structured population, I found that resource dynamics were stabilized, and the relative availability of different resources was levelled out due to cannibalism.</p><p>Taken together, my studies strongly suggest that to understand the development of resource polymorphism in consumer populations, future studies have to include the effect of a dynamic environment both with respect to resources and predators.</p>
87

Morphological and Behavioural Differentiation in a Pipefish

Robinson-Wolrath, Sarah January 2006 (has links)
<p>A central goal of evolutionary biology is to understand the processes responsible for morphological, genetic and behavioural differentiation between sexes and among geographically distinct populations. Perhaps the most significant processes are genetic drift, natural selection, phenotypic plasticity and sexual selection. The main aim of this thesis was to investigate differentiation among individuals and populations of the sex-role reversed pipefish (<i>Syngnathus typhle</i>) and, consequently, determine which processes may be responsible for emerging patterns. This unique species is characterised by males predominately choosing amongst displaying females.</p><p>In this thesis I revealed, on a microgeographic scale, morphological differentiation without genetic divergence among populations. Interestingly, females differed in size whereas the males did not. For females in this sex-role reversed species, the costs of expressing a plastic phenotype may be outweighed by the potential gains from greater survivorship, higher fecundity or increased mating success. Thus, females gain the ability to make themselves as conspicuous and attractive to males as possible in the specific environment they are living. Moreover, behavioural experiments, which focussed on describing “personalities”, reproductive investment strategies, and mate-sampling tactics, also indicated that males as well as females had the behavioural plasticity required to adjust to the environment in which they live. To this end, using video playbacks as experimental stimuli may be especially rewarding in this species.</p><p>Overall, the studies in this thesis acknowledge the ability of species to fine-tune their phenotype to maximise fitness and, therefore, highlight the importance of considering patterns of differentiation in an environment-specific context. </p>
88

Connecting microevolutionary processes with macroevolutionary patterns across space and time

Uyeda, Josef C. 15 October 2013 (has links)
Whether microevolutionary processes can explain macroevolutionary patterns has long been a matter of contentious debate. The debate has persisted largely because of the challenging task of connecting microevolutionary theory, which examines population-level phenomena on the generation scale, to data collected across larger spatial and temporal scales. My dissertation research broadly examines phenotypic evolution across multiple scales by connecting microevolutionary theory to macroevolutionary phenomena such as speciation and large-scale phenotypic change. In particular, I focus on the so-called "paradox of stasis"; which wrestles with the apparent conflict between frequently-observed cases of rapid evolution on short timescales and the frequent appearance of stasis in the fossil record. I attempt to link micro and macroevolution by using the theoretical framework of evolutionary quantitative genetics for modeling the effects of drift and selection. My four dissertation chapters examine four different systems (1) connecting quantitative genetic models of sexual selection to speciation (2) connecting microevolutionary and macroevolutionary body size data across scales of time (3) using phylogenetic comparative methods and quantitative genetic models to examine the evolution of a classic example of stasis, mammalian body temperature and (4) finally, using multi-locus phylogeography to understand the evolutionary processes that contribute to the diversification of a widespread snake across broad spatial scales. In chapter 2, I demonstrate that genetic drift combined with sexual selection can promotes speciation and diversification of male ornaments. Furthermore, I demonstrate that drift promotes the evolution of elaborate ornaments even when preferences are costly. In chapter 3, I combine data from microevolutionary field studies, the fossil record, and phylogenetic comparative data into a single analytical framework to resolve apparent conflicts between micro and macroevolutionary patterns. To do so, I compiled and analyzed the largest database of phenotypic divergence data in existence. I demonstrate that patterns of stasis persist until a million-year threshold, after which divergence begins to accumulate in a time-dependent manner. This pattern is best fit with a hierarchical model that describes evolution as occurring in bursts on the million-year timescale, but that allows for rapid, but bounded, evolution on short timescales. In chapter 4, I demonstrate that mammalian body temperature -- which has been previously presented as a classic example of stasis -- does in fact evolve extensively across the mammalian radiation (albeit slowly). Furthermore, I show that mammalian body temperature evolves in response to changing environmental conditions. Finally, I evaluate the role that genetic constraints play in the apparent slowness of body temperature evolution. In chapter 5, I examine a well-studied empirical system of garter snakes in which a strong signature of stabilizing selection has been found for phenotypic traits. Using multiple mitochondrial and nuclear loci, I show that introgression is rampant between species, and dynamic patterns of range expansion, contraction, and introgression among clades have led to a complex pattern of genetic variation. This structure of genetic variation underscores the need to examine range-wide processes for generating phenotypic divergence across clades. Overall, these chapters suggest that apparent disconnects between microevolutionary processes and macroevolutionary patterns could be explained by the scaling of population-level theory over large spatial and temporal scales. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from Oct. 25, 2012 - Oct. 25, 2013
89

Phenotypic evolution as a response to thermal ecology in the ferocious waterbug Abedus herberti (Hemiptera: Belostomatidae) /

Pelegrin, Arthur Lomis. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 81-84). Also available on the World Wide Web.
90

Systematics of Cyrtacanthacridinae (Orthoptera: Acrididae) with a focus on the genus Schistocerca Stål 1873 evolution of locust phase polyphenism and study of insect genitalia /

Song, Hojun, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 413-447).

Page generated in 0.0532 seconds