• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data-Driven Methods for Optimization Under Uncertainty with Application to Water Allocation

Love, David Keith January 2013 (has links)
Stochastic programming is a mathematical technique for decision making under uncertainty using probabilistic statements in the problem objective and constraints. In practice, the distribution of the unknown quantities are often known only through observed or simulated data. This dissertation discusses several methods of using this data to formulate, solve, and evaluate the quality of solutions of stochastic programs. The central contribution of this dissertation is to investigate the use of techniques from simulation and statistics to enable data-driven models and methods for stochastic programming. We begin by extending the method of overlapping batches from simulation to assessing solution quality in stochastic programming. The Multiple Replications Procedure, where multiple stochastic programs are solved using independent batches of samples, has previously been used for assessing solution quality. The Overlapping Multiple Replications Procedure overlaps the batches, thus losing the independence between samples, but reducing the variance of the estimator without affecting its bias. We provide conditions under which the optimality gap estimators are consistent, the variance reduction benefits are obtained, and give a computational illustration of the small-sample behavior. Our second result explores the use of phi-divergences for distributionally robust optimization, also known as ambiguous stochastic programming. The phi-divergences provide a method of measuring distance between probability distributions, are widely used in statistical inference and information theory, and have recently been proposed to formulate data-driven stochastic programs. We provide a novel classification of phi-divergences for stochastic programming and give recommendations for their use. A value of data condition is derived and the asymptotic behavior of the phi-divergence constrained stochastic program is described. Then a decomposition-based solution method is proposed to solve problems computationally. The final portion of this dissertation applies the phi-divergence method to a problem of water allocation in a developing region of Tucson, AZ. In this application, we integrate several sources of uncertainty into a single model, including (1) future population growth in the region, (2) amount of water available from the Colorado River, and (3) the effects of climate variability on water demand. Estimates of the frequency and severity of future water shortages are given and we evaluate the effectiveness of several infrastructure options.
2

Estimation d'un modèle de mélange paramétrique et semiparamétrique par des phi-divergences / Estimation of parametric and semiparametric mixture models using phi-divergences

Al-Mohamad, Diaa 17 November 2016 (has links)
L’étude des modèles de mélanges est un champ très vaste en statistique. Nous présentons dans la première partie de la thèse les phi-divergences et les méthodes existantes qui construisent des estimateurs robustes basés sur des phi-divergences. Nous nous intéressons en particulier à la forme duale des phi-divergences et nous construisons un nouvel estimateur robuste basant sur cette formule. Nous étudions les propriétés asymptotiques de cet estimateur et faisons une comparaison numérique avec les méthodes existantes. Dans un seconde temps, nous introduisons un algorithme proximal dont l’objectif est de calculer itérativement des estimateurs basés sur des critères de divergences statistiques. La convergence de l’algorithme est étudiée et illustrée par différents exemples théoriques et sur des données simulées. Dans la deuxième partie de la thèse, nous construisons une nouvelle structure pour les modèles de mélanges à deux composantes dont l’une est inconnue. La nouvelle approche permet d’incorporer une information a priori linéaire de type moments ou L-moments. Nous étudions les propriétés asymptotiques des estimateurs proposés. Des simulations numériques sont présentées afin de montrer l’avantage de la nouvelle approche en comparaison avec les méthodes existantes qui ne considèrent pas d’information a priori à part une hypothèse de symétrie sur la composante inconnue. / The study of mixture models constitutes a large domain of research in statistics. In the first part of this work, we present phi-divergences and the existing methods which produce robust estimators. We are more particularly interested in the so-called dual formula of phi-divergences. We build a new robust estimator based on this formula. We study its asymptotic properties and give a numerical comparison with existing methods on simulated data. We also introduce a proximal-point algorithm whose aim is to calculate divergence-based estimators. We give some of the convergence properties of this algorithm and illustrate them on theoretical and simulated examples. In the second part of this thesis, we build a new structure for two-component mixture models where one component is unknown. The new approach permits to incorporate a prior linear information about the unknown component such as moment-type and L-moments constraints. We study the asymptotic properties of the proposed estimators. Several experimental results on simulated data are illustrated showing the advantage of the novel approach and the gain from using the prior information in comparison to existing methods which do not incorporate any prior information except for a symmetry assumption over the unknown component.

Page generated in 0.035 seconds