• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 178
  • 70
  • 33
  • 24
  • 20
  • 9
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 423
  • 131
  • 98
  • 64
  • 61
  • 58
  • 56
  • 54
  • 53
  • 51
  • 51
  • 50
  • 49
  • 47
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Strong electron-phonon interactions in some strongly correlated systems

Reja, Sahinur January 2013 (has links)
No description available.
12

Verallgemeinerungen und Anwendungen der Fulton-Gouterman-Transformation

Rapp, Matthias. January 2000 (has links) (PDF)
Stuttgart, Universiẗat, Diss., 2000.
13

Hamiltonian flow equations and the electron phonon problem

Schütte, Albrecht. January 2002 (has links) (PDF)
Heidelberg, University, Diss., 2002.
14

Analytical model for phonon transport analysis of periodic bulk nanoporous structures

Hao, Qing, Xiao, Yue, Zhao, Hongbo 25 January 2017 (has links)
Phonon transport analysis in nano- and micro-porous materials is critical to their energy-related applications. Assuming diffusive phonon scattering by pore edges, the lattice thermal conductivity can be predicted by modifying the bulk phonon mean free paths with the characteristic length of the nanoporous structure, i.e., the phonon mean free path (Lambda(pore)) for the pore-edge scattering of phonons. In previous studies (Jean et al., 2014), a Monte Carlo (MC) technique have been employed to extract geometry determined Lambda(pore) for nanoporous bulk materials with selected periods and porosities. In other studies (Minnich and Chen, 2007; Machrafi and Lebon, 2015), simple expressions have been proposed to compute Lambda(pore). However, some divergence can often be found between lattice thermal conductivities predicted by phonon MC simulations and by analytical models using Lambda(pore). In this work, the effective Lambda(pore) values are extracted by matching the frequency-dependent phonon MC simulations with the analytical model for nanoporous bulk Si. The obtained Lambda(pore) values are usually smaller than their analytical expressions. These new values are further confirmed by frequency-dependent phonon MC simulations on nano porous bulk Ge. By normalizing the volumetric surface area A and Lambda(pore) with the period length p, the same curve can be used for bulk materials with aligned cubic or spherical pores up to dimensionless p.A of 1.5. Available experimental data for nanoporous Si materials are further analyzed with new Lambda(pore) values. In practice, the proposed model can be employed for the thermal analysis of various nanoporous materials and thus replace the time-consuming phonon MC simulations.
15

Effect of phonon interference on the thermal conductivity and heat carriers / Effets d'interférences des phonons sur la conductivité thermique et les porteurs de chaleur

Han, Haoxue 19 October 2015 (has links)
L'interférence des ondes de phonon peut modifier le spectre de phonon et ainsi la vitesse de groupe et la population de phonon. Ces interférences permettent de manipuler le flux d'énergie thermique en contrôlant la conductivité thermique et en utilisant les miroirs pour réfléchir les phonons. L'application technologique d'interférence de phonons dans les matériaux, par exemple la conversion renforcée thermoélectrique d'énergie et l'isolation améliorée thermique, a propulsé l'exploration des matériaux avec les interférences de phonons plus efficace.Dans un premier temps, nous proposons une nouvelle approche pour démontrer que la chaleur dans les solides peut être manipuler comme la lumière. Nous contrôlons avec précision le flux thermique par un métamatériau à l'échelle atomique qui comporte des défauts dans le réseau cristallin. L'interférence destructive entre les ondes de chaleur en suivant différents chemins mène à la réflexion totale de phonon et à une réduction remarquable de la conductance thermique. En exploitant cette interférence, nous modélisons une possibilité contre-intuitif de transport thermique: plus de chaleur est bloquée par l'ouverture des chaînes additionnelles de phonon. Le métamateriau thermique est un bon candidat de miroir atomique thermique de haute finesse. Nous renforçons la compréhension sur le contrôle cohérente des phonons qui peuvent être appliquée à la fois au son et à la propagation de chaleur.Dans un deuxième temps, nous introduisons un nano condensateur ultra-compacte de phonons cohérents formé par les miroirs d'interférence de haute finesse basée sur le métamatériau semi-conducteur à l'échelle atomique.Nos simulations de dynamique moléculaire montrent que le nano condensateur stocke les ondes monochromatiques térahertz, qui peuvent être utilisés pour un laser de phonon - l'émission de phonons cohérents. Un laser de phonon soit d'une ou de deux couleurs peut être réalisé en fonction de la géométrie du nano dispositif. Le stockage des phonons cohérents peut être réalisé par le refroidissement de la nano condensateur initialement thermalisé à la température ambiante ou par la technique pump-sonde. Le rétrécissement de la largeur de raie et de le nombre relatif de participation de phonon confirme un confinement dans la nanocavité par une quantité extrêmement faible de défauts de résonance. L'émission des faisceaux acoustiques cohérents en térahertz de la nano condensateur peuvent être réalisés en appliquant une contrainte réversible accordable qui décale les fréquences d'antirésonance.Enfin, nous étudions l'effet d'interférences destructrice de phonon à deux-chemin induite par les forces interatomiques de longue portée sur la conductance thermique et la conductivité d'un alliage silicium-germanium par des calculs atomiques. La conductance thermique à travers un plan atomique de germanium dans le réseau de silicium est sensiblement réduit par l'interférence destructrice du chemin de phonon entre les voisins les plus proches avec l'interaction directe contournant les atomes de défauts. Une réduction quintuple dans la conductivité thermique dans un alliage SiGe à la température ambiante a été observée en introduisant les forces de longue portée. Nous démontrons le rôle prédominant des interférences de phonons harmoniques régissant la conductivité thermique de matières solides en supprimant la diffusion inélastique de phonon à basse température. De telles interférences fournissent un mécanisme résistif harmonique pour contrôler la conduction de chaleur à travers les comportements cohérents de phonons dans les solides. / Wave interference of phonons can modify the phonon spectrum and thereby the group velocity and phonon population. These wave interferences allow the flow of thermal energy to be manipulated by controlling the materials lattice thermal conductivity and using thermal mirrors to reflect thermal phonons.The technological application of the phonon interference in materials, such as enhanced thermoelectric energy conversion and improved thermal insulation,has thrusted the exploration for highly efficient wave interference materials. First, we provide a new approach to demonstrate that heat in solids can be manipulated like light. We precisely control the heat flow by the atomic-scale phononic metamaterial, which contains deliberate flaws in the crystalline atomic lattice,channeling the heat through different phonon paths. Destructive interference between heat waves following different paths leads to the total reflection of the heat current and thus to the remarkable reduction in the material ability to conduct heat. By exploiting this destructive phonon interference, we model a very counter-intuitive possibility of thermal transport: more heat flow is blocked by the opening of the additional phonon channels. Our thermal metamaterial is a good candidate for high-fi nesse atomic-scale heat mirrors. We provide an important further insight into the coherent control of phonons which can be applied both to sound and heat propagation.Secondly, we introduce a novel ultra-compact nanocapacitor of coherent phonons formed by high-finesse interference mirrors based on atomic-scale semiconducto rmetamaterials. Our molecular dynamics simulations show that the nanocapacitor stores monochromatic terahertz lattice waves, which can be used for phonon lasing - the emission of coherent phonons. Either one- or two-color phonon lasing can be realized depending on the geometry of the nanodevice. The two-color regime of the interference cavity originates from different incidence-angle dependence of phonon wave packet transmission for two wave polarizations at the respective antiresonances. Coherent phonon storage can be achieved by cooling the nanocapacitor initially thermalized at room temperature or by the pump-probe technique. The line width narrowing and the computed relative phonon participation number confirm strong phonon confinement in the interference cavity by an extremely small amount of resonance defects. The emission of coherent terahertz acoustic beams from the nanocapacitor can be realized by applying tunable reversible stress which shifts the antiresonance frequencies.Finally, we investigate the role of two-path destructive phonon interference induced by long-range interatomic forces on the thermal conductance and conductivityof a silicon-germanium alloy by atomistic calculations. The thermal conductance across a germanium atomic plane in the silicon lattice is substantially reduced by the destructive interference of the nearest-neighbour phononpath with a direct path bypassing the defect atoms. Such an interference causes a fivefold reduction in the lattice thermal conductivity in a SiGe alloy at room temperature. We demonstrate the predominant role of harmonic phonon interferences in governing the thermal conductivity of solids by suppressing the inelastic scattering processes at low temperature. Such interferences provide a harmonic resistive mechanism to explain and control heat conduction through the coherent behaviours of phonons in solids.
16

The effect of a partial nanocrystallization on the transport properties of amorphous/crystalline composites / L’effet d’une nanocristallisation partielle sur les propriétés de transport dans les composites amorphe/cristal

Tlili, Amani 21 December 2017 (has links)
Les besoins technologiques toujours grandissants dans la société moderne suscitent la nécessité de développer des matériaux multifonctionnels innovants. Ceci est vrai surtout dans des domaines de pointe, tels que la microélectronique et la conversion d'énergie, où on demande aux matériaux de limiter la dissipation de chaleur tout en ayant de bonnes propriétés électroniques.L'optimisation d'un tel type de matériaux est toutefois complexe: une forte réduction de la conductivité thermique se fait en général aux dépenses de la conductivité électrique. Une stratégie qui a été récemment introduite est de développer des matériaux hétérogènes à l'échelle nanométrique, dits « nanocomposites ». Malgré le potentiel dont ils ont déjà fait preuve, à ce jour la compréhension fondamentale de leurs propriétés reste encore limitée. Dans cette thèse nous présentons une étude fondamentale des propriétés de transport dans des composites basés sur une matrice amorphe contenant des inclusions cristallines de tailles nanométriques, afin d'acquérir une compréhension microscopique des mécanismes en jeu. Pour ce faire, nous avons effectué une étude expérimentale dans deux composites intermétalliques, un verre métallique et un verre chalcogénure, obtenus par cristallisation directe du verre. Nous avons pu mettre en évidence un comportement fortement dépendant du contraste de propriétés entre la matrice vitreuse et les inclusions cristallines. Nos conclusions ont trouvé confirmation dans des simulations numériques par dynamique moléculaire que nous avons effectué' sur des systèmes modèles, qui ont en effet permis de mettre en évidence l'effet d'un contraste de rigidité sur les propriétés vibrationnelles de ce type de composite / Face to the growing technological needs in the modern society, the need has arisen of developing novel multifunctional materials, able to simultaneously assure different functions.This is especially important in advanced technologies, such as microelectronics and energy harvesting, where heat dissipation reduction is essential, while keeping good electrical properties.Optimizing such materials represents however a challenging task: lowering thermal conductivity generally implies lowering the electrical conductivity as well. A new strategy has recently aroused consisting in exploiting heterogeneous materials at the nanoscale, so-called “nanocomposites”. Despite their great potential, the fundamental understanding of their properties is still lacking.In this thesis, we present a fundamental investigation of the transport properties in composites made of nano-inclusions embedded in an amorphous matrix, aimed to get a microscopic insight into the mechanisms ruling transport in such materials.To this purpose, we have carried on an experimental study in two intermetallic composites, based on a metallic glass and a chalcogenide glass, where crystalline inclusions were directly obtained from the glass temperature-induced recrystallization.We find that transport behavior is strongly dependent on the properties’ contrast between the amorphous matrix and the crystalline inclusions.Our findings are comforted by our theoretical results, obtained by molecular dynamics simulations on a model composite system, which highlight the effect of the rigidity contrast on the vibrational properties of such material, and thus on thermal transport
17

A Study of the Resolution of a Triple-Axis Spectrometer and Measurement of the Phonon Spectrum of the Ternary Alloy Cu.63Ni.21Zn.16

Larose, Andre 10 1900 (has links)
<p> The phonon dispersion relation in the principal symmetry directions of a crystal of Cu-Ni-Zn was measured at 298°K by means of inelastic scattering of thermal neutrons. The specimen had an electronic concentration per atom very close to that of pure copper and it came as no surprise that no significant shift in the phonon spectrum relative to that of pure copper could be observed. </p> <p> The particular specimen used had a poor mosaic distribution; this contribution was taken into account in the calculation of the line shape and it was found that the widths of the neutron groups could be well accounted for in this way. </p> <p> The appendix is divided into six parts, four of which contain a description of projects of secondary importance that were realized. </p> / Thesis / Master of Science (MSc)
18

Mapping studies of diamond using confocal Raman spectroscopy

Pickard, Christopher David Omatayo January 1999 (has links)
No description available.
19

Bonding in semiconductors

Hodgson, Michael John January 1991 (has links)
No description available.
20

Resonant inelastic X-ray scattering as a probe of exciton-phonon coupling / Diffusion inélastique résonante de rayons X en tant que sonde du couplage excitonphonon

Geondzhian, Andrey 11 December 2018 (has links)
Les phonons contribuent à la diffusion inélastique résonante des rayons X (RIXS) du fait du couplage entre les degrés de liberté électronique et ceux du réseau. Contrairement à d'autres techniques sensibles aux interactions électron-phonon, la technique RIXS peut donner accès aux constantes de couplage dépendantes du moment. Des informations sur la dispersion de l'interaction électron-phonon sont très précieuses dans le contexte de la supraconductivité anisotrope conventionnelle et non conventionnelle.Nous avons considéré la contribution des phonons sur la diffusion RIXS d’un point de vue théorique. Contrairement aux études précédentes nous soulignons le rôle du couplage du réseau avec les trous de cœur. Notre modèle, avec les paramètres obtenus ab-initio, montre que même dans le cas d'un trou de coeur profond, la technique RIXS sonde le couplage exciton-phonon plutôt qu’un couplage direct électron-phonon.Cette différence conduit à des écarts quantitatifs et qualitatifs pour le couplage électron-phonon implicite par rapport à l'interprétation standard dans la littérature. Ainsi, notre objectif est de développer une approche rigoureuse pour quantifier le couplage électron-phonon dans le contexte des mesures de diffusion RIXS. La possibilité de reproduire avec précision les résultats expérimentaux à partir des calculs ab-initio, sans recourir à des paramètres ajustés, doit être considérée comme le test ultime d'une compréhension correcte de la contribution des phonons sur la diffusion RIXS.Nous commençons notre travail en considérant uniquement l’interaction trou de coeur-phonon dans le contexte de la spectroscopie par photoémission de rayons X. Nous combinons un calcul ab-initio de la fonction de réponse en espace réel avec des techniques de fonctions de Green à plusieurs corps pour reproduire les bandes latérales vibrationnelles dans les molécules SiX4 (X = H, F). L'approche que nous avons développée peut être appliquée aux matériaux cristallins.Nous examinons ensuite la contribution des phonons aux spectres d'absorption des rayons X. Contrairement aux excitations chargées générées par la photoémission par rayons X, l'absorption des rayons X crée une excitation neutre que nous approchons en tant que trou de cœur et électron excité. Nous résolvons d’abord la partie électronique du problème au niveau de l’équation de Bethe-Salpeter, puis nous habillons la quasi-particule excitonique à 2 particules résultante avec les interactions exciton-phonon en utilisant l’Ansatz des cumulants. La viabilité de cette méthode a été testée en calculant le seuil K XAS de la molécule N2 et le seuil K d’Oxygène de l’acétone. Les spectres vibrationnels obtenus concordent avec les résultats expérimentaux.Enfin, nous construisons une formulation hybride de la section transversale RIXS qui préserve la sommation explicite sur un petit nombre d'états finals, mais remplace la sommation sur les états intermédiaires, ce qui pourrait être extrêmement coûteux, par une fonction de Green. Nous avons obtenu un développement de la fonction de Green et dérivé des solutions analytiques exactes (dans la limite de non-recul) et approximatives. Le formalisme a de nouveau été testé sur le seuil K de l'acétone et est bien en accord avec l'expérience. En perspectives des travaux futurs, nous discutons de l’applicabilité de notre formalisme aux matériaux cristallins. / Phonons contribute to resonant inelastic X-ray scattering (RIXS) as a consequence of the coupling between electronic and lattice degrees of freedom. Unlike other techniques that are sensitive to electron-phonon interactions, RIXS can give access to momentum dependent coupling constants. Information about the dispersion of the electron-phonon interaction is highly desirable in the context of understanding anisotropic conventional and unconventional superconductivity.We considered the phonon contribution to RIXS from the theoretical point of view. In contrast to previous studies, we emphasize the role of the core-hole lattice coupling. Our model, with parameters obtained from first principles, shows that even in the case of a deep core-hole, RIXS probes exciton-phonon coupling rather than a direct electron-phonon coupling.This difference leads to quantitative and qualitative deviations from the interpretation of the implied electron-phonon coupling from the standard view expressed in the literature. Thus, our objective is to develop a rigorous approach to quantify electron-phonon coupling within the context of RIXS measurements. The ability to accurately reproduce experimental results from first-principles calculations, without recourse to adjustable parameters, should be viewed as the ultimate test of a proper understanding of the phonon contribution to RIXS.We start by considering only the core-hole--phonon interaction within the context of X-ray photoemission spectroscopy. We combine an ab initio calculation of the real-space response function with many-body Green's functions techniques to reproduce the vibrational side-bands in SiX4 (X=H, F) molecules. The approach we developed is suitable for application to crystalline materials.We next consider the phonon contribution to X-ray absorption spectra. Unlike the charged excitations generated by X-ray photoemission, X-ray absorption creates a neutral excitation that we approximate as a core-hole and an excited electron. We first solved the electronic part of the problem on the level of the Bethe-Salpeter equation and then dressed the resulting 2-particle excitonic quasiparticle with the exciton-phonon interactions using the cumulant ansatz. The viability of this methodology was tested by calculating the N K-edge XAS of the N2 molecule and the O K-edge of acetone. The resulting vibronic spectra agreed favorably with experimental results.Finally, we construct a hybrid formulation of the RIXS cross section that preserves explicit summation over a small number of final states, but replaces the summation over intermediate states, which might be enormously expensive, with a Green's function. We develop an expansion of the Green's function and derive both analytically exact (in the no-recoil limit) and approximate solutions. The formalism was again tested on the O K-edge of acetone and agrees well with the experiment. To provide an outlook towards future work, we discuss application of the developed formalism to crystalline materials.

Page generated in 0.0299 seconds