• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 9
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 62
  • 32
  • 22
  • 18
  • 17
  • 17
  • 15
  • 14
  • 12
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Phonons Manipulation in Silicon Chips Using Cavity Optomechanics

Mercadé Morales, Laura 26 July 2021 (has links)
[ES] La optomecánica de cavidades se ocupa de la interacción entre la luz y la materia a través del efecto de presión de radiación cuando las ondas ópticas y mecánicas implicadas están confinadas en una cavidad. En estos sistemas optomecánicos, la interacción entre fotones y fonones da lugar a multitud de fenómenos en función de las condiciones en las que se excita el sistema. En particular, se pueden obtener dos regímenes distintos en los que se puede, o bien absorber fonones (denominado como enfriamiento de la cavidad), o bien éstos se pueden amplificar (régimen conocido como calentamiento de la cavidad). El primer régimen puede usarse, por ejemplo, para reducir la ocupación térmica del sistema y se usa comúnmente para aplicaciones relativas al procesado de información cuántica. Sin embargo, la amplificación de fonones, que puede ser desarrollada a temperatura ambiente, ha permitido conseguir alcanzar incluso las condiciones necesarias para obtener láseres de fonones, lo cual permite poder usar esta característica como elemento de referencia en aplicaciones relativas al procesado de señales de radiofrecuencia (RF). En esta tesis se aborda el confinamiento simultáneo y la interacción de fotones y fonones en estructuras periódicas y en guías no suspendidas desarrolladas en sistemas CMOS compatibles basados en tecnología de silicio. A través del estudio experimental de estas estructuras periódicas, hemos demostrado que las cavidades optomecánicas pueden actuar como elementos clave en el dominio de la fotónica de microondas, donde todo el procesado de la información puede ser realizado en el dominio óptico a través de la manipulación de fonones en este sistema. En particular, mostramos que un solo oscilador optomecánico puede actuar tanto como un oscilador local y un mezclador de RF, y éste puede operar como un conversor de frecuencias de señales de cadenas de datos reales. Para mejorar esta funcionalidad, también se demuestra que es posible obtener tanto peines de frecuencias ópticos así como múltiples modos mecánicos confinados, aumentando así su rendimiento. Por otro lado, con el objetivo de poder solventar las posibles limitaciones de estos sistemas, en esta tesis también se exploran diferentes configuraciones que permiten la interacción acusto-óptica simultánea en la misma estructura. Específicamente, se analiza la interacción optomecánica en discos de alto índice que soportan estados cuasi-ligados en el continuo así como una propuesta de guías no suspendidas que soportan altas ganancias de Brillouin. Este último estudio debería permitir el desarrollo de sistemas optomecánicos no suspendidos donde el problema de la pérdida de fonones hacia el sustrato se resuelva, hecho que permitiría enormemente simplificar la fabricación de estos sistemas optomecánicos en chips de silicio así como su uso en múltiples aplicaciones. / [CA] L'optomecànica de cavitats s'ocupa de la interacció entre la llum i la matèria a través de l'efecte de pressió de radiació quan les ones òptiques i mecàniques implicades estan confinades en una cavitat. En aquests sistemes optomecànics, la interacció entre fotons i fonons dona lloc a multitud de fenòmens en funció de les condicions de les condicions en les quals s'excita el sistema. En particular, es poden obtindre dos règims diferents en els quals es pot, o bé, absorbir fonons (denominat com a refredament de la cavitat), o bé, es poden amplificar (règim conegut com a calfament de la cavitat). El primer règim pot usar-se, per exemple, per a reduir l'ocupació tèrmica del sistema i s'usa comunament per a aplicacions relatives al processament d'informació quàntica. No obstant això, l'amplificació de fonons, que pot ser desenvolupada a temperatura ambient, ha permés aconseguir fins i tot les condicions necessàries per a obtindre làsers de fonons, la qual cosa permet poder usar aquesta característica com a element de referència en aplicacions relatives al processament de senyals de radiofreqüència (RF). En aquesta tesi s'aborda el confinament simultani i la interacció de fotons i fonons en estructures periòdiques i en guies no suspeses en sistemes CMOS compatibles basats en tecnologia de silici. A través de l'estudi experimental d'aquestes estructures periòdiques, hem demostrat que les cavitats optomecàniques poden actuar com a elements clau en el domini de la fotònica de microones, on tot el processament de la informació pot ser realitzat en el domini òptic a través de la manipulació de fonons en aquest sistema. En particular, vam mostrar que només un oscil·lador optomecànic pot actuar tant com un oscil·lador local i un mesclador de RF, i aquest pot operar com un convertidor de freqüències de senyals de cadenes de dades reals. Per a millorar aquesta funcionalitat, també es demostra que és possible obtindre tant tren de freqüències òptics així com múltiples modes mecànics confinats, augmentant així el seu rendiment. D'altra banda, amb l'objectiu de poder solucionar les possibles limitacions d'aquests sistemes, en aquesta tesi també s'exploren diferents configuracions que permeten la interacció acusto-òptica simultània en la mateixa estructura. Específicament, s'analitza la interacció optomecànica en discos d'alt índex que suporten estats quasi-lligats en el continu així com una proposta de guies no suspeses que suporten altes ganancies de Brillouin. Aquest últim estudi hauria de permetre el desenvolupament de sistemes optomecànics no suspesos on el problema de la pèrdua de fonons cap al substrat es resolga, fet que permetria enormement simplificar la fabricació d'aquests sistema optomecànics en xips de silici així com el seu ús en diverses aplicacions. / [EN] Cavity optomechanics deals with the interaction of light and matter through the radiation pressure effect, when the involved optical and mechanical waves are confined in a cavity. In optomechanical systems, photon and phonon interaction give rise to a plethora of phenomena as a function of the driving conditions of the system. Relative to that, two distinctive regimes can be obtained which enable either the absorption of phonons (cavity cooling) or their amplification (cavity heating). The first regime can be used to reduce the thermal occupancy of the system and it is commonly used for quantum processing information applications. However, the amplification of phonons, which can be performed at room temperature, has enabled to even reach phonon lasing conditions, a feature that could be used as a reference element for RF processing applications. In this thesis, we address the simultaneous confinement and interaction of photons and phonons in periodic structures and unreleased waveguides on CMOS-compatible silicon-based technology. Throughout the experimental study of those periodic structures, we demonstrate that optomechanical cavities can perform as key blocks in the microwave photonics domain where all the information processing can be performed in the optical domain through phonon manipulation. In particular, we show that a single optomechanical oscillator can perform as both a local oscillator and an RF mixer, and it can operate as a frequency-converted of real data stream signals. To improve its performance, it is also demonstrated that optical frequency combs can be obtained by means of this system and multiple mechanical mode confinement can also be achieved, thus improving the functionality of the system. On the other hand, in order to fulfill the possible limitations of those systems, we explore different configurations enabling the simultaneous acousto-optic interaction together into the same structure. Especially, optomechanical interaction in high-index disks supporting quasi-bound states in the continuum is addressed, as well as a proposal of unreleased waveguides supporting strong Brillouin gains is also reported. The last one should lead to unreleased optomechanical interacting systems where the issue of phonon leakage into the substrate is solved, which could enormously simplify the fabrication of optomechanical systems in silicon chips as well as their practical use in multiple applications. / This work has been carried out under the framework of the H2020 FET-Open EU project PHENOMEN. This Thesis was also supported by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-16) de la Universitat Politècnica de València / Mercadé Morales, L. (2021). Phonons Manipulation in Silicon Chips Using Cavity Optomechanics [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171461
42

Dispersion analysis of nonlinear periodic structures

Manktelow, Kevin Lee 29 March 2013 (has links)
The present research is concerned with developing analysis methods for analyzing and exploring finite-amplitude elastic wave propagation through periodic media. Periodic arrangements of materials with high acoustic impedance contrasts can be employed to control wave propagation. These systems are often termed phononic crystals or metamaterials, depending on the specific design and purpose. Design of these systems usually relies on computation and analysis of dispersion band structures which contain information about wave propagation speed and direction. The location and influence of complete (and partial) band gaps is a particularly interesting characteristic. Wave propagation is prohibited for frequencies that correspond to band gaps; thus, periodic systems behave as filters, wave guides, and lenses at certain frequencies. Controlling these behaviors has typically been limited to the manufacturing stage or the application of external stimuli to distort material configurations. The inclusion of nonlinear elements in periodic unit cells offers an option for passive tuning of the dispersion band structure through amplitude-dependence. Hence, dispersion analysis methods which may be utilized in the design of nonlinear phononic crystals and metamaterials are required. The approach taken herein utilizes Bloch wave-based perturbation analysis methods for obtaining closed-form expressions for dispersion amplitude-dependence. The influence of material and geometric nonlinearities on the dispersion relationship is investigated. It is shown that dispersion shifts result from both self-action (monochromatic excitation) and wave-interaction (multi-frequency excitation), the latter enabling dynamic anisotropy in periodic media. A particularly novel aspect of this work is the ease with which band structures of discretized systems may be analyzed. This connection enables topology optimization of unit cells with nonlinear elements. Several important periodic systems are considered including monoatomic lattices, multilayer materials, and plane stress matrix-inclusion configurations. The analysis methods are further developed into a procedure which can be implemented numerically with existing finite-element analysis software for analyzing geometrically-complex materials.
43

Theoretical and Numerical Study of Nonlinear Phononic Crystals

Guerder, Pierre-Yves January 2015 (has links)
This work is dedicated to the theoretical and numerical study of nonlinear phononic crystals. The studied nonlinearities are those due to the second (quadratic) and third (cubic) order elastic constants of the materials that constitute the crystals. Nonlinear effects are studied by the means of finite element methods, used to simulate the propagation of an elastic wave through the crystals. A first research project concerns the study of a bone structure, namely the dispersion of elastic waves in a structure composed of collagen and hydroxy apatite alternate constituent layers. Simulations showed that it exists a strong link between bones hydration and their ability to dissipate the energy. The second study relates to an elastic resonator. A structure composed of steel inclusions in a silica matrix shows a switch behavior when the cubic nonlinearities of steel are taken into account. This strong nonlinear effect appears when the amplitude of the incident wave reaches a threshold. A full analytical model is provided. The last study demonstrates the design of composite materials with both strong cubic nonlinearities and weak quadratic nonlinearities. The derivation of the mixing laws of the elastic parameters of a nonlinear material inside a linear one is performed up to order three. Equations show a strong amplification of the nonlinear parameters of the material for some concentrations. Numerical simulations allow to conclude that the above mentioned resonator can be produced. For this thesis, an innovative tool based on the Discontinuous Galerkin (DG) finite element method is developed for the simulation of elastic wave propagation, in linear and nonlinear systems and in finite and semi-infinite media. The implementation of this DG code for 2D and 3D simulations benefits from the efficient exploitation of modern computer infrastructure (GPU units, clusters) using the property of massive parallelization of DG algorithms. This thesis is part of a joint agreement for an international Ph.D. degree between École Centrale de Lille and the Materials Science and Engineering department of the University of Arizona at Tucson. Ce travail porte sur l'étude théorique et numérique des cristaux phononiques non-linéaires. Les non-linéarités étudiées sont celles dues aux constantes élastiques d'ordre deux (quadratiques) et trois (cubiques) des matériaux constituant les cristaux. Les effets non-linéaires sont étudiés grâce á des méthodes d'éléments finis en simulant la propagation d'une onde élastique á travers les cristaux. Un premier projet de recherche a porté sur l'étude d'une structure osseuse, et plus spécifiquement sur la dispersion des ondes élastiques dans une structure constituée d'une alternance de couches de collagène et d'hydroxy apatite. Les simulations montrent qu'il existe un lien étroit entre l'hydratation des os et leur capacité à dissiper l'énergie. La seconde étude réalisée concerne un résonateur élastique. Une structure constituée d'inclusions d'acier dans de la silice présente un comportement de commutateur (switch) lorsque les non-linéarités cubiques de l'acier sont prises en compte. Cet effet fortement non-linéaire apparaît lorsque l'amplitude de l'onde incidente dépasse un certain seuil. Un modèle analytique complet est fourni. La dernière étude réalisée montre la conception de matériaux composites possédant de fortes non-linéarités cubiques mais de faibles non-linéarités quadratiques. La dérivation des lois de mélange des paramètres élastiques d'un matériau non-linéaire dans un matériau linéaire est effectuée à l'ordre trois. Les équations montrent une forte amplification des paramètres non-linéaires du matériau résultant pour certaines concentrations. Les simulations permettent de conclure que le résonateur mentionné ci-dessus peut effectivement étre réalisé. Pour cette thèse, un outil numérique innovant basé sur la méthode des éléments finis de type Galerkin Discontinu (DG) est développé pour la simulation de la propagation d'ondes élastiques, dans des systèmes linéaires et non-linéaires et dans des milieux finis et semi-infinis. L'implémentation de ce code DG pour des simulations 2D et 3D tire parti des infrastructures de calcul actuelles (processeurs graphiques, clusters) grâce à la propriété de parallélisation massive des algorithmes DG. Cette thèse s'est déroulée dans le cadre d'une cotutelle entre l'École Centrale de Lille et le département de Science et ingénierie des matériaux de l'Université d'Arizona, à Tucson.
44

Thermal phonon transport in silicon nanostructures / Transport des phonons dans les nanostructures de silicium

Maire, Jérémie 11 December 2015 (has links)
Lors de deux dernières décennies, la nano-structuration a permis une augmentation conséquente des performances thermoélectriques. Bien qu’à l’ origine le silicium (Si) ait une faible efficacité thermoélectrique, son efficacité sous forme de nanostructure, et notamment de nanofils, a provoqué un regain d’intérêt envers la conduction thermique au sein de ces nanostructures de Si. Bien que la conductivité thermique y ait été réduite de deux ordres de grandeur, les mécanismes de conduction thermique y demeurent flous. Une meilleure compréhension de ces mécanismes permettrait non seulement d’augmenter l’efficacité thermoélectrique mais aussi d’ouvrir la voie à un contrôle des phonons thermiques, de manière similaire à ce qui se fait pour les photons. L’objectif de ce travail de thèse était donc de développer une plateforme de caractérisation, d’étudier le transport thermique au sein de différentes nanostructures de Si et enfin de mettre en exergue la contribution du transport cohérent de phonons à la conduction thermique. Dans un premier temps, nous avons développé un système de mesure allant de pair avec une procédure de fabrication en salle blanche. La fabrication se déroule sur le site de l’institut de Sciences Industrielles et combine des manipulations chimiques, de la lithographie électronique, de la gravure plasma et du dépôt métallique. Le système de mesure est base sur la thermoreflectance : un changement de réflectivité d’un métal a une longueur d’onde particulière traduit un changement de température proportionnel. Nous avons dans un premier temps étudié le transport thermique au sein de simples membranes suspendues, suivi par des nanofils, le tout étant en accord avec les valeurs obtenues dans la littérature. Le transport thermique au sein des nanofils est bien diffus, à l’exception de fils de moins de 4 μm de long a la température de 4 K ou un régime partiellement balistique apparait. Une étude similaire au sein de structures périodiques 1D a démontré l’impact de la géométrie et l’aspect partiellement spéculaire des réflexions de phonons a basse température. Une étude sur des cristaux phononiques (PnCs) 2D a ensuite montré que même si la conduction est dominée par le rapport surface sur vole (S/V), la distance inter-trous devient cruciale lorsqu’elle est suffisamment petite. Enfin, il nous a été possible d’observer dans des PnCs 2D un ajustement de la conductivité thermique base entièrement sur la nature ondulatoire des phonons, réalisant par-là l’objectif de ce travail. / In the last two decades, nano-structuration has allowed thermoelectric efficiency to rise dramatically. Silicon (Si), originally a poor thermoelectric material, when scaled down, to form nanowires for example, has seen its efficiency improve enough to be accompanied by a renewed interest towards thermal transport in Si nanostructures. Although it is already possible to reduce thermal conductivity in Si nanostructures by nearly two orders of magnitude, thermal transport mechanisms remain unclear. A better understanding of these mechanisms could not only help to improve thermoelectric efficiency but also open up the path towards high-frequency thermal phonon control in similar ways that have been achieved with photons. The objective of this work was thus to develop a characterization platform, study thermal transport in various Si nanostructures, and ultimately highlight the contribution of the coherent phonon transport to thermal conductivity. First, we developed an optical characterization system alongside the fabrication process. Fabrication of the structures is realized on-site in clean rooms, using a combination of wet processes, electron-beam lithography, plasma etching and metal deposition. The characterization system is based on the thermoreflectance principle: the change in reflectivity of a metal at a certain wavelength is linked to its change in temperature. Based on this, we built a system specifically designed to measure suspended nanostructures. Then we studied the thermal properties of various kinds of nanostructures. Suspended unpatterned thin films served as a reference and were shown to be in good agreement with the literature as well as Si nanowires, in which thermal transport has been confirmed to be diffusive. Only at very low temperature and for short nanowires does a partially ballistic transport regime appear. While studying 1D periodic fishbone nanostructures, it was found that thermal conductivity could be adjusted by varying the shape which in turn impacts surface scattering. Furthermore, low temperature measurements confirmed once more the specularity of phonon scattering at the surfaces. Shifting the study towards 2D phononic crystals (PnCs), it was found that although thermal conductivity is mostly dominated by the surface-to-volume (S/V) ratio for most structures, when the limiting dimension, i.e. the inter-hole spacing, becomes small enough, thermal conductivity depends solely on this parameter, being independent of the S/V ratio. Lastly, we were able to observe, at low temperature in 2D PnCs, i.e. arrays of holes, thermal conduction tuning based on the wave nature of phonons, thus achieving the objective of this work.
45

Contrôle de la propagation des ondes ultrasonores dans des cristaux phononiques piézoélectriques / Control of the propagation of ultrasonic waves in the piezoelectric phononic crystals

Mansoura, Sid Ali 21 September 2015 (has links)
Le contrôle de la propagation des ondes acoustiques connait ces dernières années des applications potentielles notamment en réalisation de filtres électriques, mais aussi dans le contrôle de la vibration des structures mécaniques et l’isolation sonore. Le principe général de ce contrôle est d’attribuer aux ondes acoustiques des propriétés de propagation pouvant être modulées par une action extérieure. Dans ce contexte, l’étude menée au cours de cette thèse porte sur la possibilité de contrôler la propagation des ondes acoustiques en utilisant des matériaux piézoélectriques . Ces matériaux présentent des propriétés élastiques qui sont couplées aux grandeurs électriques à l’issu de leur processus de fabrication. La vibration d’une couche piézoélectrique est affectée par les conditions aux limites électriques imposées au niveau de ses électrodes. Un moyen simple d’imposer des conditions aux limites électriques à ce type de matériau est de connecter une impédance de charge (capacité positive, capacité négative, inductance) à ses électrodes. Les fréquences de résonnances caractéristiques de la couche piézoélectrique sont alors affectées selon la nature de cette charge. Une capacité positive permet de diminuer la fréquence de résonnance parallèle d’une couche piézoélectrique pour atteindre sa fréquence de résonnance série. En revanche, une capacité négative donne la possibilité d’augmenter la fréquence de résonnance parallèle de la couche piézoélectrique loin de la fréquence fondamentale de son mode en épaisseur. Le ca particulier d’un charge inductive offre une large possibilité de contrôler la propagation des ondes acoustiques à travers le cp piézoélectrique. Il permet d’ouvrir un gap d’hybridation dans une structure piézoélectrique unidimensionnelle, de contrôler sa position en fréquence pour provoquer l’ouverture d’une bande passante au sein du gap de Bragg, d’atténuer les ondes acoustiques dans une bande passante notamment en basses fréquences. / The ability to control the propagation of acoustic waves knows in recent years potential applications especially on the manufacture of electrical filter, but also in controlling the mechanical vibration of structures and sound insulation. To achieve this control, the properties of propagations can be changed by external load. The aim of this work is to achieve the control of acoustic waves in phononic crystal using piezoelectric materials. These materials have elastic properties coupled to the electrical properties resulting from their manufacturing process. The vibration of a piezoelectric layer is affected by the electrical boundary conditions imposed on its electrodes. A simple way to consider an electrical boundary condition on piezoelectrical material is to connect an external impedance load (positive capacitance, negative capacitance, inductance) to its electrodes. The resonance frequencies of the piezoelectric layer are then affected differently according the nature of external electric load. The positive capacitance allows to reduce the parallel resonance frequency. A negative capacitance makes it possible to increase the parallel resonance frequency of the piezoelectric layer, giving the ability to use the piezoelectric material away from away from its fundamental resonance frequency. The particular case of an inductive load has a wide possibility to control the propagation of acoustic waves through a piezoelectric pc. We demonstrate that the use of this inductive load opens a hybridization gap in a one-dimensional piezoelectric structure and enable to control the frequency position of this gap. As a result, the hybridization gap causes the opening of a bandwidth within the gap Bragg. The hybridization gap can also cause a high attenuation of acoustic waves in a pass band especially at low frequencies.
46

Propagation acoustique non linéaire dans des chaines granulaires magnétiques : ondes de rotation et effets phononiques / Nonlinear acoustic propagation in magnetic granular chains : torsional waves and phononic processes

Cabaret, Jérémy 04 July 2014 (has links)
Ce travail de recherche est une contribution à l'étude de la propagation d'ondes élastiques dans les milieux granulaires. L'objectif principal est d'analyser deux aspects particuliers qui influencent la propagation, d'une part le degré de liberté en rotation des grains et d'autre part les non-linéarités de contact. Dans le cadre de ce travail, des structures granulaires périodiques et unidimensionnelles sont étudiées.L'apport principal de ce travail est la mise en évidence expérimentale et la modélisation d'ondes de rotation pures dans une chaîne granulaire composée de billes magnétiques. Le point de départ de la modélisation est la description du contact en torsion entre deux sphères jusqu'au premier ordre de non-linéarité. Pour un moment de torsion oscillant, il est montré un comportement de type purement hystérétique quadratique. Généralement, cette non-linéarité coexiste avec d'autres types de non-linéarités (quadratique, clappement, ...) et certains de ses effets n'ont jamais été observés. Pour la première fois, la distorsion d'ondes impulsionnelles par une non-linéarité hystérétique est mise en évidence et modélisée.D'autres effets liés à la dispersion et aux non-linéarités de contact dans une chaîne diatomique sont étudiés théoriquement et expérimentalement. En particulier, la génération de l'harmonique 2 des ondes de compression présente une richesse intéressante selon leur caractère propagatif, fortement dispersif ou évanescent.Outre les apports fondamentaux, les résultats obtenus peuvent trouver des applications dans le domaine du contrôle des ondes : filtres acoustiques dépendant de l'amplitude, convertisseurs de fréquences, rectificateurs et diodes acoustiques, ... . / This research is a contribution to the study of the propagation of elastic waves in granular media. The main purpose is to analyze two particular aspects that influence the propagation, first the rotation motion of grain and other nonlinearities of contact. As part of this work, the periodic one-dimensional granular structure is studied. The main contribution of this work is the experimental demonstration and modeling purely rotational wave in a granular chain composed of magnetic beads. The starting point of modeling is the description of the pure shear coupling at the contact between two spheres excited in torsion up to the first order of nonlinearity. For a oscillating torque, pure nonlinear quadratic hysteretic behaviour is shown. Generally, this nonlinearity coexists with other types of nonlinearities (quadratic, clapping, ...) and some of its effects have not been observed. For the first time, the transformation of pulse profile in a medium with pure hysteretic quadratic nonlinearity, essentially different from the distortion by classical nonlinearities, is reported.Other effects related to the dispersion and nonlinearity of contact in a diatomic chain are studied theoretically and experimentally. In particular, the generation of the 2nd harmonic wave compression presents an interesting behaviour according to their propagating nature, highly dispersive or evanescent. Apart from the fundamental interests, the results may find applications in the field of wave control: amplitude dependent filtering devices, rectifiers, actuating devices, acoustic diodes, ... .
47

Phononic Crystals to Control the Propagation of Elastic Waves / Etude de lentille acoustique à gradient d'indice

Zhao, Jinfeng 09 January 2015 (has links)
Ce travail de thèse concerne la focalisation des ondes élastiques se propageant dans une plaque mince ou à la surface d’un milieu semi-infini, au travers de lentilles acoustiques planes. Les dispositifs que nous avons étudiés sont basés sur des cristaux phononiques 2D, constitués d'inclusions d'air dans une matrice solide. Ces hétérostructures présentent un gradient de leurs propriétés élastiques le long d'une direction de la lentille. Le gradient d'indice est obtenu en modulant soit la taille des inclusions d'air, soit la distance entre deux inclusions consécutives. L’approche que nous avons adoptée est basée principalement sur la simulation numérique par éléments finis. Cependant une partie significative du travail concerne le calcul analytique de la trajectoire des rayons acoustiques ainsi que la vérification expérimentale des résultats théoriques.L’approche analytique a consisté à calculer la trajectoire des rayons acoustique dans la lentille, en tenant compte de l'anisotropie le long de chaque ligne d'inclusions. L'analyse analytique, appliquée à une onde de Lamb antisymétrique (A0), ainsi que les résultats numériques et les données expérimentales, expliquent parfaitement les caractéristiques du champ de déplacement dans la zone focale, y compris la position, la forme et les dimensions latérales de la tâche focale. Le formalisme s’applique quelle que soit la symétrie du cristal phononique et peut être étendu à des ondes élastiques présentant une autre polarisation. Nous montrons dans ce travail qu’une largeur à mi-hauteur aussi petite que 0.64 peut être obtenue lorsque la focalisation intervient au sein de la lentille.Le formalisme s’applique également à la focalisation derrière la lentille. Dans ce cas, la résolution au point focal est déterminée par le "nombre d'onde transversal maximal" à la sortie de la lentille, en bon accord avec les résultats numériques et expérimentaux. Ensuite, nous avons conçu une lentille à gradient d’indice avec des piliers résonnants érigés entre les inclusions d'air. L'analyse numérique prévoit une résolution légèrement au-delà de la limite de diffraction. Expérimentalement, nous mesurons une largeur à mi-hauteur de la tâche focale juste au-dessus de la limite de diffraction.Enfin, nous avons étudié la focalisation d’une onde de Rayleigh par une lentille à gradient d’indice. Nous avons trouvé un bon accord entre le calcul des trajectoires des rayons, les simulations numériques et les expériences. En outre, nous avons analysé la transmission de l’énergie élastique lorsque la focalisation intervient derrière la lentille. / This manuscript is about the focusing of elastic beams propagating in a plate or on the free surface of a semi-infinite medium, using flat acoustical lenses. The devices we have studied are based onto 2D phononic crystals that are made of air inclusions in a solid matrix and featuring a gradient of their elastic properties along one direction of the lens. The gradient index (GRIN) is obtained by modulating either the size of the air inclusions or the distance between two consecutive inclusions.We primarily adopted a computational approach but a significant part of the work concerns the analytical calculation of the ray trajectories as well as the experimental check of the theoretical findings. The analytical approach consists to calculate the ray trajectories of an elastic waves within the lens while accounting for the anisotropy along each lines of inclusions. The analysis applied to the lowest-order flexural Lamb wave (A0), together with both the numerical results and the experimental data, well explains the features of the displacements field in the focus area, including the location, shape and lateral width. The formalism applies whatever the symmetry of the phononic crystal is and can be extended to other polarization of the elastic wave. We show in this work that FWHM as small as 0.64 may be obtained when focusing inside the lens.The formalism applies also to the focusing behind the lens. In that case, the resolution at the focus is determined by the “maximum transverse wavenumber” at the exit of lens, in good agreement with the numerical and experimental results. Then we designed a GRIN phononic lens featuring resonant pillars in addition to the constitutive air inclusions. The numerical analysis foresees the resolution at the focus beyond the diffraction limit, while experimentally we measured the resolution to be just above the diffraction limit. Lastly, we turned to the subwavelength focusing of Rayleigh waves through GRIN lenses. We found a good agreement between the ray trajectories calculation, the numerical simulations and the experiments. We further analysed the influence of energy transmission when the focus is located behind the lens.
48

Theoretical and Experimental Analysis of Topological Elastic Waveguides

Ting-Wei Liu (12472668) 06 December 2022 (has links)
<p>The capability of manipulation of the flow of mechanical energy in the form of mechanical waves (including acoustic and elastic waves) has always been a challenge and a critical part in various areas of engineering. The recent advances in topological acoustic/elastic metamaterials certainly open a new pathway to the manipulation of mechanical waves, especially for the novel scattering-immune wave-guiding capability, even in the presence of defects, disorders or sharp bends along the waveguide. In this Dissertation, the theoretical background and experimental evidence of various types of elastic-wave topological metamaterials including analogues to 2D quantum valley Hall effect (QVHE) materials, 2D quantum spin Hall effect (QSHE) topological insulators are presented. First, the formulation the elastic-wave analogue to QVHE materials in a general continuous elastic phononic structure (not limited to local resonant lattices, filling the gap in the literature) is proposed, and a strategy using pressurized cells to actively control the phononic lattice is presented. By finite prestrain and geometric nonlinear effect, the space inversion symmetry of the original hexagonal lattice is broken, resulting in distinct QVHE phases (characterized by valley Chern numbers) in lattice domains with opposite pressurization. With such mechanism, the edge-state path, i.e., the domain wall connecting lattices with distinct QVHE phases, can be real-time configured. Further more, edge states with tunable frequency-wavenumber dispersion can be created at the external boundaries of the lattice by appropriate pressurization of the outermost cells. An aluminum reticular sheet built with water-jet cutting is machined in the pre-deformed pattern with a Z-shape domain wall at the center, which spatially divides the sheet into two domains with opposite QVHE phases. Using piezoelectric transducers and laser Doppler vibrometry, the measured harmonic and transient responses confirm the back-scattering-immunity of the topological edge states, and the frequency-wavenumber dispersion matches the numerical prediction. A strategy is proposed for unidirectionally generating edge states along the domain wall using two off-phase transducers, which is also experimentally demonstrated. For elastic-wave analogue to QSHE topological insulators, we focus on the ``zone-folding'' method and propose a honeycomb 2D elastic beam network with periodically altered thickness with a generalized Kekule distortion pattern. Such framework provides a parametric space with exhaustive control in the topological phase diagram of waves in the lattice compared to earlier works in the literature. The effective Hamiltonian as well as the characterized topological phase are gauge dependent, particularly they change with different reference frames. This lead to ambiguity in the topological phase of such phononic crystal. Based on this argument, it is predicted that edge states could exist at a dislocation interface connecting two piece of phononic structures of the same pattern with relative displacement. Following the same idea, but considering the available fabrication options, a phononic plate with honeycomb groove pattern engraved on both sides is built, which the depth varied according to the Kekule pattern. With proper tuning of the parameters, it realizes an analogue to the QSHE topological insulator. With <em>ab initio</em> calculation of the Berry curvature (without involving any approximations such as the perturbative approach), a new topological invariant <em>local topological charge</em> is defined and evaluated as the counterpart of the Z<sub>2</sub> invariant in the classical-wave-zone-folding analogue. The local topological charge has intrinsic ambiguity and its value depends on the selected reference frame. However, its <em>change </em>according to changes in the parameters, under a consistent reference frame, is well-defined. Given the fact that shifting the reference frame by certain fractions of a lattice constant was equivalent to changing one of the parameters by a certain amount, it also lead to a well-defined change in the local topological charge, which indicates topological phase transition, and one can predict the existence of edge states at the displacement-dislocation interface between two neighboring lattices having the same pattern up to a rigid-body shifting. The phononic plate is machined by a CNC mill, and the experiment is carried out using piezoelectric transducers and laser Doppler vibrometry, which confirms the existence and robustness of the topological edge states at such dislocation interface connecting identical pattern, which was unprecedented in both quantum and classical systems. The final part of this Dissertation focuses on creating classical mechanical analogues to the 1D Kitaev superconducting model and Majorana-like bound states aimed at future acoustic-wave based computation.</p>
49

Ultrasonic transmission through periodically perforated plates

Estrada Beltrán, Héctor Andrés 23 December 2011 (has links)
Las estructuras periódicas macroscópicas han sido objeto de una intensa investigación durante las dos últimas décadas debido a su capacidad de imitar fenómenos ondulatorios que son inherentes a la escala atómica. Aunque las placas perforadas son estructuras muy comunes en acústica, éstas parecen guardar propiedades de transmisión de sonido inexploradas, cuyo estudio ha sido impulsado por el descubrimiento de la Transmisión Óptica Extraordinaria en láminas de metal perforadas con agujeros distribuidos periódicamente cuando interactúan con la luz. En el presente trabajo se muestra que las placas perforadas no sólo presentan máximos de transmisión total resonante y mínimos de la anomalía de Wood cuando los agujeros están distribuidos de forma periódica, sino también apantallamiento acústico extraordinario debido al cortocircuito hidrodinámico producido por el acoplamiento entre la placa y el fluido. También se detalla el rol de los parámetros geométricos de las placas perforadas en las características de transmisión, ilustrando diferentes estrategias para moldear el espectro de transmisión. La transmisión acústica a través de placas de aluminio con perforaciones regulares sumergidas en agua presenta una alta complejidad tanto a incidencia normal como cuando se varía el ángulo de incidencia del sonido. Aparecen ondas de superficie radiantes provenientes de la vibración de la placa, lo cual es demostrado usando un nuevo modelo teórico que incluye el acoplamiento elastoacústico completo. Gracias al estudio complementario de la transmisión y la propagación en placa de una placa fonónica sólido-sólido se retrata una perspectiva completa del efecto del acoplamiento. Como consecuencia directa, se observan fenómenos de plegamiento y bandas de propagación prohibida en modos tipo Scholte-Stoneley sin necesidad de corrugaciones o de agujeros. Finalmente, se comparan las propiedades de transmisión de agujeros individuales y redes de agujeros para luz, electrones y sonido analizando y comentando sus diferencias. Se ha encontrado que, aunque para la luz la red de agujeros en sí misma lleva a transmisiones del 100% y modos atrapados a la superficie, esto no se produce ni para electrones ni para sonido. En consecuencia, las resonancias del agujero constituyen el mecanismo clave que posibilita la existencia de fenómenos exóticos en sonido. Los resultados principales aquí mencionados son explicados de manera detallada y comentados sobre la base de datos teóricos y experimentales. El objetivo general de esta tesis es dilucidar por medios teóricos y experimentales los fenómenos físicos que se hayan involucrados en la transmisión acústica a través de placas perforadas. En este estudio se usa esencialmente el método de transmisión de ultrasonidos bajo el agua. Los modelos teóricos desarrollados tienen en cuenta la configuración experimental para poder establecer comparaciones precisas entre las medidas y los cálculos. Se toman en cuenta diversos factores que pueden modificar la transmisión de sonido a través de placas perforadas tales como: - La orientación de la onda incidente con respecto a la placa. .- Los parámetros geométricos que definen la placa, es decir, la distancia entre agujeros, el diámetro de los mismos y el espesor de la placa. .- Los parámetros elásticos relacionados con el contraste de impedancia entre el sólido y el fluido. .- El material contenido en los agujeros, de modo que se estudian no sólo placas fonónicas constituidas por un fluido y un sólido sino también aquellas formadas por dos sólidos distintos. Para el caso particular de una placa fonónica constituida por dos sólidos se emplea además una técnica para medir las vibraciones de la placa directamente en su superficie con el fin de complementar las medidas de transmisión de ultrasonidos. Desde una perspectiva teórica, el problema ha sido abordado para estructuras infinitas partiendo de diversas hipótesis. / Estrada Beltrán, HA. (2011). Ultrasonic transmission through periodically perforated plates [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14119
50

Analysis of Vibration of 2-D Periodic Cellular Structures

Jeong, Sang Min 19 May 2005 (has links)
The vibration of and wave propagation in periodic cellular structures are analyzed. Cellular structures exhibit a number of desirable multifunctional properties, which make them attractive in a variety of engineering applications. These include ultra-light structures, thermal and acoustic insulators, and impact amelioration systems, among others. Cellular structures with deterministic architecture can be considered as example of periodic structures. Periodic structures feature unique wave propagation characteristics, whereby elastic waves propagate only in specific frequency bands, known as "pass band", while they are attenuated in all other frequency bands, known as "stop bands". Such dynamic properties are here exploited to provide cellular structures with the capability of behaving as directional, pass-band mechanical filters, thus complementing their well documented multifunctional characteristics. This work presents a methodology for the analysis of the dynamic behavior of periodic cellular structures, which allows the evaluation of location and spectral width of propagation and attenuation regions. The filtering characteristics are tested and demonstrated for structures of various geometry and topology, including cylindrical grid-like structures, Kagom and eacute; and tetrhedral truss core lattices. Experimental investigations is done on a 2-D lattice manufactured out of aluminum. The complete wave field of the specimen at various frequencies is measured using a Scanning Laser Doppler Vibrometer (SLDV). Experimental results show good agreement with the methodology and computational tools developed in this work. The results demonstrate how wave propagation characteristics are defined by cell geometry and configuration. Numerical and experimental results show the potential of periodic cellular structures as mechanical filters and/or isolators of vibrations.

Page generated in 0.0514 seconds