• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 7
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 127
  • 70
  • 66
  • 29
  • 27
  • 24
  • 17
  • 17
  • 16
  • 16
  • 16
  • 16
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Phosphatidylinositol 3-kinase/Akt signaling pathway and angiogenesis

Cao, Zongxian. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2006. / Title from document title page. Document formatted into pages; contains ix, 224 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
52

Investigation of phosphatidylinositol 5-phosphate's role in insulin-stimulated glucose uptake in a skeletal muscle cell line

Grainger, Deborah January 2011 (has links)
Phosphatidylinositol 5-phosphate (PtdIns5P) is the least well-characterised member of the phosphoinositide family of essential regulatory phospholipids. PtdIns5P levels are altered within cells in response to a number of stimuli and evidence is accumulating to suggest that it possesses important functions in cellular signalling. However, the physiological role of this lipid remains imperfectly understood. Previous studies have shown that PtdIns5P is elevated in adipocytes in response to insulin, and microinjection of PtdIns5P into these cells promotes plasma membrane insertion of the insulin-regulated glucose transporter GLUT4 (Sbrissa et al., 2004). This finding suggests a potential role of PtdIns5P as a mediator in insulin-stimulated glucose uptake, a process essential for efficient glucose homeostasis. As approximately 75% of postprandial glucose disposal is carried out by skeletal muscle, it is important to investigate the role of PtdIns5P in the response of this tissue to insulin. Therefore, this work has used differentiated myotubes of the rat muscle cell line, L6, to explore the effects of altered PtdIns5P levels on insulin-stimulated glucose uptake. This cell model had not been previously used in the laboratory so it first required characterisation. Here insulin is shown to stimulate a transient increase of PtdIns5P in L6 myotubes, indicative of a signalling role in response to insulin. This project developed several tools to further investigate this potential role for PtdIns5P in the insulin response of myotubes. One such development was the successful overexpression of the PtdIns5P 4-kinase PIP4KIIalpha in these cells, which was able to abolish the insulin-stimulated PtdIns5P rise. This correlated with a loss of insulin-stimulated glucose uptake (upon PIP4KIIalpha expression). Interestingly, artificial elevation of PtdIns5P in L6 myotubes increases glucose uptake in the absence of stimulation. This phenomenon appears to result from the activation of PI3-kinase signalling, as it is abolished by the PI3-kinase inhibitor wortmannin, and involves activation of the PI3-kinase effector Akt. These results are consistent with the idea that insulin-stimulated PtdIns5P production contributes to the robust PI3-kinase/Akt activation necessary for insulin-stimulated glucose uptake in muscle.
53

Interactions of perihperal membrane proteins with phosphatidylinositol lipids : insights from molecular dynamics simulations

Naughton, Fiona January 2017 (has links)
Interactions between proteins and membranes are central to many signalling pathways and other cellular processes. Phosphatidylinositol phosphates (PIPs) are a family of lipids often acting as second messengers and targeted by peripheral proteins in these processes. A pipeline was developed combining the molecular dynamics (MD) approaches of umbrella sampling and coarse-grain modelling, and used to quantify and compare the interactions with PIP-containing model membranes of 13 pleckstrin homology (PH) domains, a common lipid-binding domain found in many proteins showing varied affinities and specificities for PIPs. Lipid selectivity generally agreed with previous observations. Several membrane-binding modes were identified, revealing PIP interactions through a secondary site are more common than suggested experimentally and appear to be related to overall affinity. Results suggest that simultaneous binding of multiple PIP lipids is required to achieve the high affinities characteristic of PH domains. Multiscale MD, combining coarse-grain binding simulations and atomistic refinement, was used to investigate PTEN, a tumour suppressor catalysing interconversion of PIPs and associated with many cancers and other disorders. Regions often ignored in previous studies were revealed to favour productive binding, largely via electrostatics. PIP clustering by bound PTEN and membrane insertion in the productive mode were demonstrated. Existence of an N-terminal PIP-binding site was supported, with this region appearing disordered, rather than helical as previously suggested. Changes in interdomain orientation when bound and with the clinically-relevant R173C mutation further suggest the importance of the interdomain interface for productive binding. Together, this work demonstrates the important contributions MD can make towards understanding protein/membrane interactions, particularly in the context of managing the diseases caused by their disruption.
54

Rôle de l'inositol polyphosphate 4-phosphatase de type II (Inpp4b) dans la différenciation et l'activité des ostéoclastes

Ferron, Mathieu January 2005 (has links)
No description available.
55

Estudo da sinalização de mastócitos mediada por IgE: desenvolvimento de inibidores e efeito de níveis reduzidos de fosfatidilinositol 4,5-bifosfato / Study of IgE-mediated mast cell signaling: development of inhibitors and effect of reduced levels of phosphatidylinositol 4,5-biphosphate

Marcela de Souza Santos 03 July 2012 (has links)
As doenças alérgicas alcançaram proporções mundialmente epidêmicas. A ativação de receptores para IgE, Fc RI, em mastócitos, é o mecanismo chave para a iniciação e propagação das respostas patofisiológicas dos processos alérgicos. Após a interação destas células com um alérgeno, há a ativação de uma cascata de eventos de sinalização, a qual resulta na secreção de mediadores alérgicos pré-formados, através de um processo regulado de exocitose, além da síntese e secreção de mediadores lipídicos e citocinas. Desta forma, a inibição da responsividade dos mastócitos, quando ativados por um alérgeno, representa uma via importante para o desenvolvimento de novos candidatos a fármacos com indicação antialérgica. Neste sentido, este trabalho buscou, num primeiro momento, contribuir com a compreensão dos papéis desempenhados por um glicerofosfolipídeo de membrana, fosfatidilinositol 4,5-bifosfato (PtdIns(4,5)P2), em eventos de sinalização em mastócitos, mediados por IgE. Este trabalho permitiu destacar a importância de PtdIns(4,5)P2 como um regulador chave das respostas de Ca2+ e das alterações de morfologia de mastócitos estimulados por um alérgeno. Foi observado ainda que níveis reduzidos de PtdIns(4,5)P2 determinaram a inibição do processo de endocitose de receptores Fc RI ativados, um evento crucial para a redução da transdução de sinais. Estes resultados não somente trazem um ganho de conhecimento acerca dos detalhes que orquestram os eventos de sinalização em mastócitos estimulados por um alérgeno, como também apontam que a regulação dos níveis de PtdIns(4,5)P2 pode certamente ser apontada como alvo para o desenvolvimento de novas moléculas inibidoras da ativação mastocitária. A segunda etapa deste trabalho teve como objetivo avaliar o potencial inibitório de alguns compostos de origem natural e sintética sobre a degranulação de mastócitos, evento em que mediadores alérgicos, como a histamina, são secretados, em resposta ao estímulo celular. Inicialmente, avaliou-se o efeito inibitório de um conjunto de arilcumarinas sintéticas, estruturalmente relacionadas, sobre a degranulação. Um número significativo de moléculas foram ativas e, dentre elas, algumas substituições junto à estrutura do anel 3-fenilcumarínico, como as hidroxilações das posições 6, 2\'e 5\', puderam ser identificadas como importantes para o potencial bioativo. Finalmente, o trabalho apresentou uma molécula de origem natural, como um potente inibidor da degranulação de mastócitos e da secreção de citocinas. Trata-se da piridovericina, um metabólito secundário, isolado do fungo entomopatogênico Beauveria bassiana. Dessa forma, tanto as cumarinas, como a piridovericina podem ser apontadas como compostos de partida de grande potencial para o desenvolvimento de novos fármacos anti-alérgicos. / Allergic diseases have approached epidemic proportions worldwide. The activation of IgE receptors, Fc RI, from mast cells, is the key event for the initiation and propagation of pathophysiological responses involved in the allergic processes. The interaction between mast cells and allergens triggers a signaling cascade, which results in secretion of pre-formed allergic mediators, through regulated exocytosis, in addition to the synthesis and secretion of lipid mediators and cytokines. In this way, the inhibition of mast cell responsiveness, upon allergen stimulation, represents an important pathway for the development of new antiallergic drug candidates. Thus, the present work tried, firstly, to gain better insight of the roles played by phosphatidylinositol 4,5-biphosphate (PtdIns(4,5)P2) during IgE-mediated mast cell signaling. This work highlighted the importance of PtdIns(4,5)P2 as a key regulator of Ca2+ responses and mast cell morphological alteration, when activated by an allergen. It was observed that reduced levels of PtdIns(4,5)P2 determined the inhibition of activated Fc RI endocytosis, a crucial event for signal transduction termination. Those results not only improve the actual knowledge in mast cell signaling but also point out the regulation of PtsIns(4,5)P2 levels as a target to be pursued during the development of new inhibitors of mast cell activation. The second part of this work aimed to evaluate the capacity of both synthetic and natural compounds to inhibit mast cell degranulation, characterized by the release of granule-contained allergic mediators, such as histamine, upon cell stimulation. Initially, the inhibitory effect of a set of structurally related synthetic arylcoumarins was evaluated. A significant number of molecules were active, and a few substitutions within such molecules could be pointed as important for the biological activity, such as the hydroxylation of carbons 6, 2\' e 5\' of the 3-phenylcoumarin ring. Lastly, this work presents a natural compound as a potent inhibitor of mast cell degranulation and cytokine secretion. The refered compound is pyridovericin, a secondary metabolite isolated from the entomophatogenic fungus Beauveria bassiana. Therefore, both the coumarin derivatives and pyridovericin can be regarded as lead compounds for the development of new anti-allergic drugs.
56

A Role for the Phosphoinositide Lipid Kinase PI4KIIIbeta in Breast Oncogenesis and Akt Activation

Morrow, Anne January 2014 (has links)
The lipid kinase phosphatidylinositol 4-kinase III β (PI4KIIIβ) phosphorylates phosphatidylinositol (PtdIns) to generate PI(4)P in the Golgi. PI4KIIIβ is likely involved in the development of breast cancer as it has been reported genetically amplified in a subset of human breast tumours and is a downstream effector of the eukaryotic elongation factor 1 alpha 2 (eEF1A2), a transforming gene that is amplified and highly expressed in approximately 60% of human breast tumours. The goal of my thesis is to investigate a role for PI4KIIIβ in breast oncogenesis. We show that PI4KIIIβ is highly expressed in approximately 20% of primary human breast tumours. Overexpression of PI4KIIIβ in an invasive breast ductal carcinomas cell line, BT549, increased the production of filopodial actin filament protrusions and enhanced in vitro proliferative capacity. Enhanced PI4KIIIβ expression did not impact the migratory rate of these breast cancer cells. We found that PI4KIIIβ expression activates Akt kinase in the BT549 breast cancer cell line. PI4KIIIβ overexpression led to an increase in the plasma membrane abundance of the PI3K derived PI(3,4,5)P3/PI(3,4)P2 lipids, upstream activators of Akt signalling. PI(4)P and PI(4,5)P2 are precursors to PI(3,4,5)P3 and PI(3,4)P2 generation, however, no changes in the overall cellular abundance or localization of PI(4)P or PI(4,5)P2 were detected in PI4KIIIβ-overexpressing cells. Inhibition of PI4KIIIβ kinase activity, using the drug Pik93, had no effect on PI4KIIIβ-mediated Akt activation. Additionally, ectopic expression of a catalytically inactive PI4KIIIβ also led to increased Akt activity and PI(3,4,5)P3/PI(3,4)P2 plasma membrane abundance. Together, this implies that PI4KIIIβ regulates Akt independently of PI(4)P generation. The PI4KIIIβ interacting protein, Rab11, is likely involved in PI4KIIIβ mediated Akt activation, as RNAi-mediated depletion of Rab11 suppressed the effect of PI4KIIIβ overexpression on Akt activation. Furthermore, PI4KIIIβ overexpression altered cellular Rab11 distribution and led to enhanced recruitment of PI4KIIIβ and Rab11 to recycling endosomes. Therefore, PI4KIIIβ is highly expressed in a subset of breast tumours and upregulated PI4KIIIβ expression enhances filopodia production and cell growth in vitro. Enhanced PI4KIIIβ expression increases PI(3,4,5)P3/PI(3,4)P2 plasma membrane abundance and Akt activation independently of its kinase function, through a mechanism that likely involves Rab11. This work suggests that PI4KIIIβ impacts breast oncogenesis by regulating PI3K/Akt signalling through Rab11 and endosomal trafficking.
57

The role of PtdIns(4,5)P2 and its regulatory proteins in the development of insulin resistance in cell culture models

Ryan, Alexander January 2013 (has links)
Insulin resistance, a key risk factor for type 2 diabetes, can be defined as when cells fail to respond effectively to insulin. In striated muscle and fat, this manifests as impaired insulin-stimulated glucose uptake due to reduced plasma membrane insertion of the glucose transporter GLUT4. In cell culture models, insulin resistance induced by chronic exposure to insulin, endothelin-1 or glucosamine, is correlated with reduced immunoreactivity of the lipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in plasma membrane sheets. However, the reason for this decrease, and whether other factors that induce insulin resistance affect PtdIns(4,5)P2 levels, is unknown. Using L6 skeletal muscle myotubes and 3T3-L1 adipocytes, this project has investigated whether PtdIns(4,5)P2 levels are perturbed in insulin resistance induced by several factors, including exposure to insulin, oxidative stress, and treatment with tumour necrosis factor α, endothelin-1 or angiotensin II (Ang II).All these pre-treatments were found to abolish insulin-stimulated 3H 2-deoxy-glucose uptake, and significantly decrease PtdIns(4,5)P2 levels, measured in cell extracts by quantitative blotting using a PtdIns(4,5)P2-specific probe, developed from the PH domain of phospholipase C (PLC) δ. Importantly the ability of insulin to stimulate glucose uptake can be restored by replenishing PtdIns(4,5)P2 in L6 myotubes treated with insulin and Ang II. PtdIns(4,5)P2 levels are regulated by three families of proteins; PIP kinases, which synthesise it, phosphatases, which remove phosphate groups from the inositol headgroup, and PLCs, which hydrolyse it. Membrane preparations from Ang II- and insulin-induced insulin resistant L6 myotubes showed no differences in PtdIns(4,5)P2 production or dephosphorylation. However a significant increase in PLC activity was detected in membranes from insulin resistant cells and membrane localisation of PLCβ family members was increased in insulin resistant cells. Furthermore, studies using PLC inhibitors show a restoration of PtdIns(4,5)P2 levels in insulin resistant cells, leading to partial reversal of insulin resistance.This study therefore shows a causal link between decreased PtdIns(4,5)P2 levels and insulin resistance in L6 myotubes, and that PLCs are the reason for the PtdIns(4,5)P2 decrease in Ang II- and insulin-induced insulin resistance. PLCs, or their activation pathways, may thus be a novel target for combating insulin resistance, and preventing type 2 diabetes.
58

A Severe Case of Cutaneous Adverse Drug Reaction Secondary to a Novice Drug: Idelalisib

Gabriel, Joseph Gabriel, Kapila, Aaysha, Gonzalez-Estrada, Alexei 01 May 2017 (has links)
Phosphatidylinositol 3-kinase δ (PIK3δ) is a tyrosine kinase essential for B cell survival, making it an important target in the treatment of chronic lymphocytic leukemia. Idelalisib is an inhibitor of PIK3δ demonstrating initial success in disease response, but is now shown to have a decreased overall survival and life-threatening serious adverse events. The following is an unfortunate case of a grade III adverse skin reaction secondary to idelalisib with the likely complication of methicillin-resistant Staphylococcus aureus bacteremia.
59

Vascular Endothelial Growth Factor and Angiopoietin-1 Protected Cardiac Myoblasts From Apoptosis Induced by H<sub>2</sub>O<sub>2</sub>

Zhou, Lei, Ma, Wenzhu, Zhang, Fumin, Yang, Zhijian, Lu, Li, Ding, Zhaofen, Ding, Bisen, Ha, Tuanzhu, Li, Chuanfu, Gao, Xiang 01 March 2003 (has links)
Aim: To explore the protective effects and involved mechanisms of two angiogenic growth factors, vascular endothelial growth factor (VEGF165) and angiopoietin-1 in cardiac myoblasts. Methods: Replication-deficient adenovirus encoding for human VEGF165 (Ad-VEGF165) or angiopoietin-1 (Ad-Ang1) were transfected into H9C2 cardiac myoblasts. Recombinant adenovirus encoding for green fluorescent protein (Ad-GFP) was used as vehicle control. Twenty-four hours later, cell apoptosis was induced by 300 μmmol of H2O2. Genomic DNA was extracted and DNA fragmentation was analyzed in 1.6% agarose gels. Phosphatidylinositol-3 kinase(PI-3 K) activity and bcl-2 expression level were investigated in H9C2 after gene transfection 24 hours later by an immol/Lunoprecipitated kinase assay and Western blot assay respectively. The effect of wartmannin, a specific inhibitor of PI-3 K, on DNA fragmentation, PI-3 K activity and bcl-2 expression was also analyzed by a pre-treatment of 30 minutes before transfection. Results: Apoptotic DNA fragmentation induced by H2O2 was significantly inhibited by the transfaction of Ad-VEGF165 and/or Ad-Ang1 but then aborted by the pretreatment of wartmannin. PI-3 K activity was significantly elevated after Ad-VEGF165 + Ad-Ang1 transfection as compared to Ad-GFP transfection group(2.60 vs 1.32, P < 0.01). Anti-apoptotic factor bcl-2 expression was upregulated in Ad-VEGF165 (2.1-fold), Ad-Ang1 (1.7-fold) and Ad-VEGF165 + Ad-Ang1 (1.7-fold) treated groups as compared to Ad-GFP transfection group. Wortmannin suppressed PI-3 K activiation induced by Ad-VEGF165 (from 1.83 to 0.69, P < 0.05). Ad-Ang1 (from 1.80 to 0.97, P = 0.07) or Ad-VEGF165a + Ad-Ang1 (from 2.60 to 0.42, P < 0.01). However, upregulation of bcl-2 induced by Ad-VEGF165 and/or Ad-Ang1 was not aborted by wortmannin pretreatment. Conclusions: VEGF165 and/or Ang1 can protect cardiac myoblasts from apoptosis induced by H2O2 throught PI-3 K and bcl-2 pathway. The anti-apoptotic function of either VEGF165 or Ang1 could be served as a now therapeutic target including their angiogenic benefits.
60

Inositol Derivatives Modulate Spontaneous Transmitter Release at the Frog Neuromuscular Junction

Brailoiu, Eugen, Miyamoto, Michael D., Dun, Nae J. 01 January 2003 (has links)
One of the consequences of G-protein-coupled receptor activation is stimulation of phosphoinositol metabolism, leading to the generation of IP 3 and its metabolites 1,3,4,5-tetrakisphosphate (IP4) and inositol 1,2,3,4,5,6-hexakisphosphate (IP6). Previous reports indicate that high inositol polyphosphates (IP4 and IP6) are involved in clathrin-coated vesicular recycling. In this study, we examined the effects of IP4 and IP6 on spontaneous transmitter release in the form of miniature endplate potentials (MEPP) and on enhanced vesicular recycling by high K+ at frog motor nerve endings. In resting conditions, IP4 and IP6 delivered intracellularly via liposomes, caused concentration-dependent increases in MEPP frequency and amplitude. Pretreatment with the protein kinase A (PKA) inhibitor H-89 or KT 5720 reduced the IP4-mediated MEPP frequency increase by 60% and abolished the IP6-mediated MEPP frequency increases as well as the enhancement in MEPP amplitude. Pretreatment with antibodies against phosphatidylinositol 3-kinase (PI 3-K), enzyme also associated with clathrin-coated vesicular recycling, did not alter the IP4 and IP6-mediated MEPP frequency increases, but reduced the MEPP amplitude increase by 50%. In our previous reports, IP3, but not other second messengers releasing Ca2+ from internal Ca2+ stores, is able to enhance the MEPP amplitude. In order to dissociate the effect of Ca2+ release vs. metabolism to IP4 and IP 6, we evaluated the effects of 3-deoxy-3-fluoro-inositol 1,4,5-trisphosphate (3F-IP3), which is not converted to IP 4 or IP6. 3F-IP3 produced an increase then decrease in MEPP frequency and a decrease in MEPP amplitude. In elevated vesicle recycling induced by high K+-Ringer solution, IP4 and IP6 have similar effects, except decreasing MEPP frequency at a higher concentration (10-4 M). We conclude that (1) high inositol polyphosphates may represent a link between IP3 and cAMP pathways; (2) the IP3-induced increase of MEPP amplitude is likely to be due to its high inositol metabolites; (3) PI 3-K is not involved in the IP 4 and IP6-mediated MEPP frequency increases, but may be involved in MEPP size.

Page generated in 0.1024 seconds