• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo in vitro do efeito de unidades fotoativadoras com diferentes comprimentos de onda na dureza (por meio de micro e ultramicroendentação) e módulo de elasticidade de uma resina composta nanohíbrida / Effect of light sources with different wavelengths in micro and ultramicrohardness and elastic modulus of a nanohybrid composite resin. An in vitro study

Araujo, Jesuina Lamartine Nogueira 04 June 2013 (has links)
Este trabalho avaliou in vitro a dureza e módulo de elasticidade de uma resina composta nanohíbrida (Tetric N-Ceram/Ivoclair-Vivadent) com diferentes cores, fotoativada por duas unidades com diferentes comprimentos de onda em 3 espessuras (1, 2 e 3mm) comparadas à partir da superfície irradiada (0mm). Os espécimes foram divididos em grupos (n=5): microdureza Knoop-KHN, ultramicrodureza-DUH e módulo de elasticidade-ME, cor (A2 e Bleach-M(BM), fotoativador LEDazul (Elipar Freeligth2/3M(750mW/25s/430-480nm(FL) e LEDazul/violeta Bluephase/Ivoclar/Vivadent (1200mW/cm²/15s/380-515nm(B15) e 30s(B30). Os espécimes foram armazenados por 24h/37ºC. Os ensaios de KHN foram realizados no HMV-2000/Shimadzu, com carga de 25gf/40s, e de DUH e ME no DUH 211S/Shimadzu com força de 10mN e tempo de espera de 0s. Foram realizadas 5 endentações na superfície irradiada (0mm) e na base das amostras (1, 2 e 3mm). A análise estatística foi realizada por ANOVA, Tukey e correlação de Pearson (p<0,01%). O teste de Pearson mostrou haver correlação direta entre a KHN e a DUH. A fonte FL promoveu maiores valores de KHN e de DUH para as duas resinas testadas; enquanto que a fonte B15, promoveu o maior valor de ME. Quanto às espessuras, 0 e 1mm apresentaram maiores valores de KHN e de DUH, e menores de ME que as espessuras de 2 e 3mm. A cor A2 apresentou maior valor de KHN e DUH e menor ME que a cor Bleach-M. Assim, de acordo com a metodologia proposta e os resultados apresentados pode-se concluir que apesar de a luz LEDazul/violeta propor uma maior eficácia na polimerização de resinas de cor clara, no tocante às propriedades avaliadas isso não foi verificado. / This study evaluated in vitro the hardness (micro and ultramicro) and elastic modulus of a nanohybrid composite resin (Tetric N-Ceram/Ivoclar-Vivadent) with different colors, light sources and thickness. The specimens were divided into groups (n=5): KHN-Knoop microhardness, DUH-nanohardness and ME-elastic modulus; colors: A2 and Bleach-M (BM); light sources: LEDblue Elipar Free light 2/3M-ESPE (750mW/cm²/ 25s/430-480nm- (FL)), LEDblue/violet Bluephase/Ivoclar-Vivadent (1.200mw/cm²/15s/380-515nm) (B15) and 30s (B30); thickness: 1mm, 2mm and 3mm, compared to the irradiated surface (0mm). Specimens were stored dry for 24hours at 37ºC after photo curing. Assays were performed at KHN in HMV-2000/ Shimadzu with load of 25gf at 40s and DUH/ME in DUH 211S/Shimadzu with force of 10mN and no hold time (0s). 5 indentations of each test were made in the surfaces opposites to the photo curing. A statistical analysis was performed by ANOVA, Tukey and Pearson correlation (p<0.01%). Pearsons Test showed a direct correlation between KHN and DUH. Comparison between KHN and ME in the studied resins indicated that the light source FL promoted higher values of KHN and DUH to both resins tested, whereas the B15 light source promoted the higher ME value. Regarding thickness 0mm and 1mm showed higher KHN and DUH and lower ME than 2 and 3mm thickness. A2 color showed higher KHN and DUH and lower ME than BM. Thus, according to the proposed methods and the presented results, the LEDblue/violet was not better for curing the light color of the nanohybrid resin, than LEDblue.
2

Estudo in vitro do efeito de unidades fotoativadoras com diferentes comprimentos de onda na dureza (por meio de micro e ultramicroendentação) e módulo de elasticidade de uma resina composta nanohíbrida / Effect of light sources with different wavelengths in micro and ultramicrohardness and elastic modulus of a nanohybrid composite resin. An in vitro study

Jesuina Lamartine Nogueira Araujo 04 June 2013 (has links)
Este trabalho avaliou in vitro a dureza e módulo de elasticidade de uma resina composta nanohíbrida (Tetric N-Ceram/Ivoclair-Vivadent) com diferentes cores, fotoativada por duas unidades com diferentes comprimentos de onda em 3 espessuras (1, 2 e 3mm) comparadas à partir da superfície irradiada (0mm). Os espécimes foram divididos em grupos (n=5): microdureza Knoop-KHN, ultramicrodureza-DUH e módulo de elasticidade-ME, cor (A2 e Bleach-M(BM), fotoativador LEDazul (Elipar Freeligth2/3M(750mW/25s/430-480nm(FL) e LEDazul/violeta Bluephase/Ivoclar/Vivadent (1200mW/cm²/15s/380-515nm(B15) e 30s(B30). Os espécimes foram armazenados por 24h/37ºC. Os ensaios de KHN foram realizados no HMV-2000/Shimadzu, com carga de 25gf/40s, e de DUH e ME no DUH 211S/Shimadzu com força de 10mN e tempo de espera de 0s. Foram realizadas 5 endentações na superfície irradiada (0mm) e na base das amostras (1, 2 e 3mm). A análise estatística foi realizada por ANOVA, Tukey e correlação de Pearson (p<0,01%). O teste de Pearson mostrou haver correlação direta entre a KHN e a DUH. A fonte FL promoveu maiores valores de KHN e de DUH para as duas resinas testadas; enquanto que a fonte B15, promoveu o maior valor de ME. Quanto às espessuras, 0 e 1mm apresentaram maiores valores de KHN e de DUH, e menores de ME que as espessuras de 2 e 3mm. A cor A2 apresentou maior valor de KHN e DUH e menor ME que a cor Bleach-M. Assim, de acordo com a metodologia proposta e os resultados apresentados pode-se concluir que apesar de a luz LEDazul/violeta propor uma maior eficácia na polimerização de resinas de cor clara, no tocante às propriedades avaliadas isso não foi verificado. / This study evaluated in vitro the hardness (micro and ultramicro) and elastic modulus of a nanohybrid composite resin (Tetric N-Ceram/Ivoclar-Vivadent) with different colors, light sources and thickness. The specimens were divided into groups (n=5): KHN-Knoop microhardness, DUH-nanohardness and ME-elastic modulus; colors: A2 and Bleach-M (BM); light sources: LEDblue Elipar Free light 2/3M-ESPE (750mW/cm²/ 25s/430-480nm- (FL)), LEDblue/violet Bluephase/Ivoclar-Vivadent (1.200mw/cm²/15s/380-515nm) (B15) and 30s (B30); thickness: 1mm, 2mm and 3mm, compared to the irradiated surface (0mm). Specimens were stored dry for 24hours at 37ºC after photo curing. Assays were performed at KHN in HMV-2000/ Shimadzu with load of 25gf at 40s and DUH/ME in DUH 211S/Shimadzu with force of 10mN and no hold time (0s). 5 indentations of each test were made in the surfaces opposites to the photo curing. A statistical analysis was performed by ANOVA, Tukey and Pearson correlation (p<0.01%). Pearsons Test showed a direct correlation between KHN and DUH. Comparison between KHN and ME in the studied resins indicated that the light source FL promoted higher values of KHN and DUH to both resins tested, whereas the B15 light source promoted the higher ME value. Regarding thickness 0mm and 1mm showed higher KHN and DUH and lower ME than 2 and 3mm thickness. A2 color showed higher KHN and DUH and lower ME than BM. Thus, according to the proposed methods and the presented results, the LEDblue/violet was not better for curing the light color of the nanohybrid resin, than LEDblue.
3

Photo-Curing Behavior and Thermal Properties of Silicone Semi Interpenetrating Polymer Network (Semi-IPN) Organogels

Kaymakci, Orkun 04 January 2013 (has links)
Silicone hydrogels are receiving considerable interest due to their important biomedical application areas such as contact lenses and wound dressings. The applications of such materials are usually in the hydrated state, as hydrogels. However, manufacturing and molding processes are mostly carried out in the organically solvated state, as organogels. This thesis investigates the effects of some of the manufacturing parameters such as curing time and thermal processing on thermal, mechanical, viscoelastic and adhesive/cohesive fracture properties of silicone semi-interpenetrating polymer network organogels. Curing time may affect the extent of reaction and the crosslink density of a gel network. In order to investigate the effect of this parameter, materials were photo-cured for different times within the range of 150s to 1800s. Gel content, uniaxial tensile, dynamic mechanical, adhesive fracture and cohesive fracture properties were obtained as a function of photo-curing time and results were correlated with each other in order to have a better understanding of the effects on the material properties. Additionally, thermal properties of the gels were studied in detail. Crystallization and melting behavior of one of the solvents in the organogel were investigated by differential scanning calorimetry and thermal optical microscopy. Correlation between the thermal properties of the solvent and the gel network structure was shown. Dynamic mechanical analysis experiments were performed to investigate the effect of solvent crystallization on the mechanical properties. Finally, the effect of thermal processing parameters such as the heating  rate and the minimum cooling temperatures on the crystallization and the thermo-mechanical properties were studied. / Master of Science
4

Photo-reactive Surfactant and Macromolecular Supramolecular Structures

Cashion, Matthew Paul 11 June 2009 (has links)
For the first time nonwoven fibrous scaffolds were electrospun from a low molar mass gemini ammonium surfactant, N,N–-didodecyl-N,N,N–,N–-tetramethyl-N,N–-ethanediyl-di-ammonium dibromide (12-2-12). Cryogenic transmission electron microscopy (cryo-TEM) and solution rheological experiments revealed micellar morphological transitions of 12-2-12 in water and water:methanol (1:1 vol). Electrospinning efforts of 12-2-12 from water did not produce fibers at any concentration, however, electrospinning 12-2-12 in water:methanol at concentrations greater than 2C* produced, hydrophilic continuous fibers with diameters between 0.9 and 7 μM. Photo-reactive surfactants were synthesized to electrospin robust surfactant membranes. Before electrospinning it was important to fundamentally understand the structure-property relationship of gemini surfactants. The thermal and solution properties were explored for a series of ammonium gemini surfactants using differential scanning calorimetry (DSC), polarized light microscopy (PLM), and conductivity experiments. The Kraft temperature (Tk) was measured in water and water:methanol (1:1 vol) to investigate the influence of solvent on the surfactant solution properties. Other experiments investigate how associated photo-curable architectures are applicable in macromolecular architectures, to gain a fundamental understanding of how hydrogen bonding associations influence the photo-reactivity of functionalized acrylic copolymers. Novel hot melt pressure sensitive adhesives (HMPSAs) were developed from acrylic terpolymers of 2-ethylhexyl acrylate (EHA), 2-hydroxyethyl acrylate (HEA), and methyl acrylate (MA) functionalized with hydrogen bonding and photo-reactive functionalities. The synergy of hydrogen bonding and photo-reactivity resulted in higher peel values and rates of cinnamate photo-reactivity with increasing urethane concentration. Random copolymers of poly(n-butyl acrylate (nBA)-co-2-hydroxyethyl methacrylate (HEMA)) were functionalized with hydrogen bonding and photo-reactive groups to explore the photo-curing of associated macromolecular architectures. The influence of urethane hydrogen bonding on the photo-reactivity of cinnamate-functionalized acrylics was investigated with photo-rheology and UV-vis spectroscopy. Cinnamate-functionalized samples displayed an increase in modulus with exposure time, and the percentage increase in modulus decreased as the urethane content increased. The synergy of hydrogen bonding and photo-reactive groups resulted in higher rates of cinnamate photo-reactivity with increasing urethane concentration. Electrospun fibers were in situ photo-crosslinked to develop fibrous membranes from cinnamate functionalized low Tg acrylics. Electrospinning was conducted approximately 55 °C above the Tg of the cinnamate acrylate and the electrospun fibers did not retain their fibrous morphology without photo-curing. However, electrospun fibers were collected that retained their fibrous morphology and resisted flow when in situ photo-cured during electrospinning. The intermolecular photo-dimerization of cinnamates resulted in a network formation that prevented the low Tg cinnamate acrylate from flowing. / Ph. D.
5

光重合法による曲げおよびねじり剛性を有する審美性矯正ワイヤーの試作 / Fabrication of Aesthetic Wires with Flexural and Torsional Stiffness by Photo Curing Method

豊泉, 裕 24 March 2000 (has links)
共著者あり。共著者名: 亘理文夫,今井徹,山方秀一,小林雅博. 日本歯科理工学会, 豊泉裕,亘理文夫,今井徹,山方秀一,小林雅博 = TOYOIZUMI, Hiroshi ; WATARI, Fumio ; IMAI, Tohru ; YAMAGATA, Shuichi ; KOBAYASHI, Masahiro, 光重合法による曲げおよびねじり剛性を有する審美性矯正ワイヤーの試作 = Fabrication of Aesthetic Wires with Flexural and Torsional Stiffness by Photo Curing Method, 歯科材料・器械 = The Journal of the Japanese Society for Dental Materials and Devices, 18(6), 1999 NOV, pp.429-440 / Hokkaido University (北海道大学) / 博士 / 歯学

Page generated in 0.066 seconds