• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle des microorganismes des nuages dans la chimie atmosphérique. Comparaison avec la chimie radicalaire / Role of cloud microorganisms in atmospheric chemistry. Comparison with radical chemistry

Vaïtilingom, Mickaël 06 May 2011 (has links)
Les nuages sont des systèmes multiphasiques (gaz, liquide, solide) dans lesquels la matière organique dissoute est soumise à de multiples transformations chimiques. Ces transformations en phase aqueuse de l’atmosphère sont supposées être uniquement le fait de processus abiotiques, majoritairement liés aux processus photochimiques et à la réactivité des radicaux libres (•OH, NO3•, HO2•, etc.). De récentes études ont montré la présence de microorganismes (bactéries, champignons dont levures) métaboliquement actifs dans les nuages. Ceci soulève la question de leur activité, en tant que biocatalyseurs dans la transformation des molécules organiques comme alternative aux voies photochimiques. L’objectif de ce travail est d’estimer dans quelle mesure la biomasse active peut impacter la chimie du nuage. Les analyses microbiologiques (ATP, cellules totales et cultivables, identifications taxonomiques) d’échantillons d’eau nuageuse collectés au sommet du puy de Dôme (1465 m) ont été réalisées de 2003 à 2010. Le contenu total en cellules microbiennes dans l’eau nuageuse est en moyenne de l’ordre de 1×105 cellules mL-1 pour les bactéries et de 1×104cellules mL-1 pour les champignons (dont levures). Les mesures de la concentration en ATP indiquent que la majorité des cellules microbiennes de l’eau du nuage est dans un état viable (valeur moyenne: ~ 4×10-6 pmol ATP cellule-1). Afin d’étudier l’influence biocatalytique de ces microorganismes dans le nuage, des solutions d’eau nuageuse naturelles et artificielles ont été incubées en présence de microorganismes et/ou d’irradiation UV (avec ou sans ajout de H2O2). Cela a permis d’évaluer la contribution des processus biocatalytiques et photo-induits (via la production de radicaux hydroxyle •OH) sur les transformations du méthanol, du formaldéhyde et des principaux acides carboxyliques présents dans l’eau nuageuse (acétate, formiate, oxalate, succinate et malonate). Les vitesses de bio- et de photo-transformation de ces composés organiques obtenues dans nos conditions expérimentales sont du même ordre de grandeur (excepté pour l’oxalate). L’acidité du milieu, ainsi que la présence d’irradiation UV et de radicaux •OH, ne semblent pas inhiber l’activité métabolique des microorganismes du nuage ; de plus, la biodégradation du H2O2 présent dans l’eau nuageuse naturelle par sa microflore endogène a également été observée. Cela implique que les microorganismes peuvent modifier le bilan carboné, mais aussi la capacité oxydante au sein de la phase aqueuse du nuage et par conséquent influer sur la chimie atmosphérique. / Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, such as carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. We investigated to which extent the active biomass (bacteria, yeasts and fungi) existing incloud water represents an alternative route to the chemical reactivity of organic compounds. Microbial analysis of cloud water sampled at the puy de Dôme Mountain (1465 m.a.s.l;France) has been performed between 2003 and 2010. In average, the total microbial cells content in cloud water was 1×105 cells mL-1 for bacteria, and 1×104 cells mL-1 for fungi and yeasts. The ATP cell concentration values measured in cloud water samples prove the existence of a metabolic activity into cloud droplets. To study the biocatalytic influence of viable microorganisms on organic compounds in cloud water, artificial and natural cloud water solutions were incubated in presence of cultivable cells in the dark or under UV irradiation (with and without H2O2 addition). Contribution of biocatalytic and photo-induced processes (via •OH radicals production) over transformation of methanol, formaldehyde and the main carboxylic acids present in cloud water (acetate,formate, oxalate, succinate and malonate) were determined from these experiments. Bio- and photo-transformation rates of these organic compounds obtained in our experimental conditions are in the same range of order (except for oxalate). Microorganisms present in the natural cloud samples are not damaged or metabolically inactivated by the acidity of the cloud water, and by the presence of UV radiation and •OH radicals. H2O2 present in the natural cloud water samples was also biodegraded during the incubation-time by the endogenous microflora. This study shows that microorganisms could affect the carbon budget, but also the oxidative capacity of the cloud aqueous phase and consequently could influence the atmospheric chemistry.
2

Modélisation des processus physico-chimiques nuageux : études de la réactivité de la matière organique / Modelling of cloud physico-chemical processes : studies of the reactivity of organic matter

Long, Yoann 05 October 2012 (has links)
Dans l’atmosphère, la matière organique est omniprésente et joue un rôle important par son action sur le bilan radiatif de la Terre et par son impact sur la santé publique notamment dans les zones fortement polluées. A ce jour plus de 10000 Composés Organiques Volatils différents ont été identifiés dans l’atmosphère. Leurs propriétés physico-chimiques (solubilité, volatilité, réactivité, …) sont variées et mal documentées. Leur distribution est perturbée par la présence de nuage qui représente un milieu réactif. L’objectif de cette thèse est d’évaluer la contribution des processus physico-chimiques sur la redistribution des COV à partir d'études numériques via le modèle de processus M2C2 (Model of Multiphase Cloud Chemistry). Les résultats sur les processus microphysiques en phase mixte ont montré que la rétention des composés chimiques dans les cristaux de glace qui grossissent principalement par givrage des gouttelettes de nuage, est un processus important dans la redistribution des espèces en phase gazeuse, comme la forme des cristaux (complexe ou sphérique). Par ailleurs, une intensité du givrage plus élevée entraîne un dégazage des composés chimiques dissous dans l’eau liquide nuageuse plus important et réparti sur une gamme de températures plus faibles dans le cas des cristaux complexes. La chimie en phase aqueuse du modèle M2C2 a été confrontée et calibrée avec des mesures effectuées lors d’expériences d’irradiations d’échantillons d’eau synthétique (i.e. de composition chimique connue). Ce travail a mis en évidence la complexité du système HxOy/fer et les incertitudes associées, notamment en présence de matière organique. Ces premières études ont montré la nécessité, dans le cas considéré, de prendre en compte la photolyse du complexe fer/oxalate à un seul ligand Fe(C2O4)+ et d'étudier expérimentalement la formation de complexes fer – acide formique en détail. Cette thèse aborde le développement de la chimie en phase aqueuse dans M2C2 en ajoutant les voies d’oxydation des composés organiques à deux atomes de carbone à partir de données expérimentales et d'analogie mécanistiques. Ce nouveau mécanisme a été testé sur un ensemble de scénarios académiques (urbain, rural et marin). Les résultats montrent, dans le cas d’un scénario urbain, que les COV influent sur l’évolution temporelle du radical hydroxyle en phase aqueuse à travers une modification importante de ses sources et de ses puits ; notamment par la présence de nouveaux complexes organiques avec le fer. Les alcools, transférés en phase aqueuse ne contribuent que très faiblement, par oxydation, aux aldéhydes dissous. Les aldéhydes sont issus principalement de la phase gazeuse. Enfin, les acides carboxyliques en phase aqueuse sont produits par oxydation des aldéhydes à un taux du même ordre de grandeur que celui de leur transfert de masse. / Organic matter is ubiquitous in the atmosphere and plays a key role on both Earth radiative budget and public health particularly in high pollution level areas. Up to now around 10000 different VOCs (Volatil Organic Compounds) were identified. Their physical and chemical properties (solubility, volatility, reactivity …) are highly variables and not fully documented. Their distribution is perturbed by cloud droplet which represents a reactive media. The aim of this thesis is to evaluate the physical and chemical processes contribution on VOCs distribution from numerical studies using the M2C2 (Model of Multiphase Cloud Chemistry) model. A detailed analysis of the microphysical rates and chemical rates linked to retention and burial effects show that for a moderate precipitating mixed-phase-cloud, the effect of the ice phase on gas phase composition is driven by riming of cloud droplets onto graupels, which leads to retention or not of soluble chemical species in the ice phase. Finally, the impact of crystal geometry on the efficiency of collection is studied together with its impact on the riming of cloud droplets on graupels and also on the retention of chemical species in ice phase. Numerical chemical outputs from M2C2 model were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the "oxidative engine" of the HxOy/iron chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. This thesis proposes the development of a new cloud chemical mechanism considering oxidative pathways of VOCs with 2-carbon atoms from experimental data and mechanism analogies. This new mechanism is tested using academic scenarios (urban, remote and marine). Results show that VOCs modify the sources and sinks of hydroxyl radical through the formation of new iron organic complexes in the case of urban scenario. In aqueous phase, alcohols concentrations are mainly drive by mass transfer and are not a significant source for aldehydes which are mostly produced in gaseous phase. Carboxylic acids are formed by aldehydes oxidation with a rate as a same order than their mass transfer.
3

Rôle des microorganismes des nuages dans la chimie atmosphérique. Comparaison avec la chimie radicalaire

Vaïtilingom, Mickaël 06 May 2011 (has links) (PDF)
Les nuages sont des systèmes multiphasiques (gaz, liquide, solide) dans lesquels la matière organique dissoute est soumise à de multiples transformations chimiques. Ces transformations en phase aqueuse de l'atmosphère sont supposées être uniquement le fait de processus abiotiques, majoritairement liés aux processus photochimiques et à la réactivité des radicaux libres (*OH, NO3*, HO2*, etc.). De récentes études ont montré la présence de microorganismes (bactéries, champignons dont levures) métaboliquement actifs dans les nuages. Ceci soulève la question de leur activité, en tant que biocatalyseurs dans la transformation des molécules organiques comme alternative aux voies photochimiques. L'objectif de ce travail est d'estimer dans quelle mesure la biomasse active peut impacter la chimie du nuage. Les analyses microbiologiques (ATP, cellules totales et cultivables, identifications taxonomiques) d'échantillons d'eau nuageuse collectés au sommet du puy de Dôme (1465 m) ont été réalisées de 2003 à 2010. Le contenu total en cellules microbiennes dans l'eau nuageuse est en moyenne de l'ordre de 1×105 cellules mL-1 pour les bactéries et de 1×104cellules mL-1 pour les champignons (dont levures). Les mesures de la concentration en ATP indiquent que la majorité des cellules microbiennes de l'eau du nuage est dans un état viable (valeur moyenne: ~ 4×10-6 pmol ATP cellule-1). Afin d'étudier l'influence biocatalytique de ces microorganismes dans le nuage, des solutions d'eau nuageuse naturelles et artificielles ont été incubées en présence de microorganismes et/ou d'irradiation UV (avec ou sans ajout de H2O2). Cela a permis d'évaluer la contribution des processus biocatalytiques et photo-induits (via la production de radicaux hydroxyle *OH) sur les transformations du méthanol, du formaldéhyde et des principaux acides carboxyliques présents dans l'eau nuageuse (acétate, formiate, oxalate, succinate et malonate). Les vitesses de bio- et de photo-transformation de ces composés organiques obtenues dans nos conditions expérimentales sont du même ordre de grandeur (excepté pour l'oxalate). L'acidité du milieu, ainsi que la présence d'irradiation UV et de radicaux *OH, ne semblent pas inhiber l'activité métabolique des microorganismes du nuage ; de plus, la biodégradation du H2O2 présent dans l'eau nuageuse naturelle par sa microflore endogène a également été observée. Cela implique que les microorganismes peuvent modifier le bilan carboné, mais aussi la capacité oxydante au sein de la phase aqueuse du nuage et par conséquent influer sur la chimie atmosphérique.
4

Modélisation des processus physico-chimiques nuageux : études de la réactivité de la matière organique

Long, Yoann 05 October 2012 (has links) (PDF)
Dans l'atmosphère, la matière organique est omniprésente et joue un rôle important par son action sur le bilan radiatif de la Terre et par son impact sur la santé publique notamment dans les zones fortement polluées. A ce jour plus de 10000 Composés Organiques Volatils différents ont été identifiés dans l'atmosphère. Leurs propriétés physico-chimiques (solubilité, volatilité, réactivité, ...) sont variées et mal documentées. Leur distribution est perturbée par la présence de nuage qui représente un milieu réactif. L'objectif de cette thèse est d'évaluer la contribution des processus physico-chimiques sur la redistribution des COV à partir d'études numériques via le modèle de processus M2C2 (Model of Multiphase Cloud Chemistry). Les résultats sur les processus microphysiques en phase mixte ont montré que la rétention des composés chimiques dans les cristaux de glace qui grossissent principalement par givrage des gouttelettes de nuage, est un processus important dans la redistribution des espèces en phase gazeuse, comme la forme des cristaux (complexe ou sphérique). Par ailleurs, une intensité du givrage plus élevée entraîne un dégazage des composés chimiques dissous dans l'eau liquide nuageuse plus important et réparti sur une gamme de températures plus faibles dans le cas des cristaux complexes. La chimie en phase aqueuse du modèle M2C2 a été confrontée et calibrée avec des mesures effectuées lors d'expériences d'irradiations d'échantillons d'eau synthétique (i.e. de composition chimique connue). Ce travail a mis en évidence la complexité du système HxOy/fer et les incertitudes associées, notamment en présence de matière organique. Ces premières études ont montré la nécessité, dans le cas considéré, de prendre en compte la photolyse du complexe fer/oxalate à un seul ligand Fe(C2O4)+ et d'étudier expérimentalement la formation de complexes fer - acide formique en détail. Cette thèse aborde le développement de la chimie en phase aqueuse dans M2C2 en ajoutant les voies d'oxydation des composés organiques à deux atomes de carbone à partir de données expérimentales et d'analogie mécanistiques. Ce nouveau mécanisme a été testé sur un ensemble de scénarios académiques (urbain, rural et marin). Les résultats montrent, dans le cas d'un scénario urbain, que les COV influent sur l'évolution temporelle du radical hydroxyle en phase aqueuse à travers une modification importante de ses sources et de ses puits ; notamment par la présence de nouveaux complexes organiques avec le fer. Les alcools, transférés en phase aqueuse ne contribuent que très faiblement, par oxydation, aux aldéhydes dissous. Les aldéhydes sont issus principalement de la phase gazeuse. Enfin, les acides carboxyliques en phase aqueuse sont produits par oxydation des aldéhydes à un taux du même ordre de grandeur que celui de leur transfert de masse.

Page generated in 0.0941 seconds