• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamics and Kinetics of Ligand Photodissociation in Heme Proteins and Formation of DNA i-Motif

Butcher, David S 01 March 2017 (has links)
Heme proteins carry out a diverse array of functions in vivo while maintaining a well-conserved 3-over-3 α-helical structure. Human hemoglobin (Hb) is well-known for its oxygen transport function. Type 1 non-symbiotic hemoglobins (nsHb1) in plants and bacterial flavohemoglobins (fHb) from a variety of bacterial species have been predicted to carry out a nitric oxide dioxygenase function. In nsHb1 and fHb this function has been linked to protection from nitrosative stress. Herein, I combine photoacoustic calorimetry (PAC), transient absorption spectroscopy (TA), and classical molecular dynamics (cMD) simulations to characterize molecular mechanism of diatomic ligand interactions with a hexa-coordinate globin from plant (rice hemoglobin), bacterial flavohemoglobins and human hemoglobin. In rice type 1 non-symbiotic hemoglobin (rHb1), the dynamics and energetics of structural changes associated with ligand photodissociation is strongly impacted by solvent and temperature, namely CO escape from the protein matrix is slower at pH = 6.0 compare to neutral pH (ns) due to the CD loop reorganization which forms a pathway for ligand escape. In human hemoglobin, exogenous allosteric effectors modulate energetics of conformational changes associated with the CO and O2 escape although the effectors impact on rate constants for ligand association is small. The conformational dynamics associated with ligand photorelease from fHbs from Cupriavidus necator (FHP) and Staphylococcus aureus (HMPSa) are strongly modulated by the presence of azole drugs indicating that drug association modulates structural properties of the heme binding pocket. In addition, we carried out a study of the formation of the DNA intercalated motif (i-motif). The formation of the structure is strongly favored at acidic pH; therefore, PAC was combined with a 2-nitrobenzaldehyde pH-jump to probe formation of the i-motif on fast timescales. i-Motif folding is two-step process with the initial protonation of cytosine residues being endothermic with ΔHfast=8.5 ± 7.0 kcal mol-1 and ΔVfast=10.4 ± 1.6 mL mol-1 and subsequent nucleation/i-motif folding (τ = 140 ns) with ΔHslow=-51.5 ± 4.8 kcal mol-1 and ΔVslow=-6.6 ± 0.9 mL mol-1. The above results indicate that PAC can be employed to study diverse biochemical reactions such as DNA folding, drug binding and ligand photorelease from proteins.
2

Photothermal Studies of Carboxymyoglobin

Small, Meagan 15 July 2010 (has links)
Small ligand diffusion in heme proteins is not fully understood. To help better understand CO diffusion, three systems were investigated: L29H/F43H site-directed sperm whale myoglobin, horse heart myoglobin in a heavy water buffer, and calix[4]resorcinarene. Binding of copper to calix[4]resorcinarene was photophysically characterized to unravel transient binding of small molecules in heme-copper proteins. Copper binding was found to have a low dissociation constant of approximately 8.6 micrometers.. Reaction profiles using photoacoustic calorimetry were constructed for the myoglobin systems. In deuterium oxide, ligand escape is not rate limited by water entry. Large enthalpy differences arise from the thermodynamic properties of deuterium oxide and the extensive hydrogen bonding network in myoglobin. In the mutant, CO rebinds primarily to the heme and is exothermic with a large volume contraction because of altered electrostatics within the binding pocket and higher water occupancy.
3

Time-resolved thermodynamics studies of heme signaling proteins and model systems

Mokdad, Audrey 01 June 2009 (has links)
Heme-based gas sensor proteins have the ability to sense diatomic molecules such as O2 (FixL, EcDos or HemAT), CO (CooA, a CO-sensing protein of Rhodospirillum rubrum) and NO (guanylate cyclase) molecules and subsequently regulate numerous important biological processes in prokaryotic and eukaryotic organisms. The sensing function of these proteins is initiated by the binding of an effector (i.e., O2, CO, etc5) to the heme iron which then leads to a cascade of conformational events which gives rise to changes in kinase activity, DNA-binding activity, etc... In order to better understand the mechanism heme-based signaling, time resolved photothermal methods as well as transient optical techniques were utilized to obtain thermodynamic profiles for ligand binding/release in heme based signaling proteins including HemAT from Bacillus subtilis (aerotactic transducer), FixL from Sinorhizobium meliloti (regulation of the nitrogen fixation) and CooA from Rhodospirillum rubrum (transcriptional activator). In addition, a number of model systems were examined to understand the underlying thermodynamic processes involved in heme ligation. The variation of volume and enthalpy changes associated with spin state change of the iron from high-spin to low-spin where examined using the spin crossover Fe(III)(salten)(mepepy) complex. In addition, the experimental determination of the volume change due to electrostriction events were using Ru(II)(L)3 and the Debye-Hückel equation. Finally, different model heme proteins were studied to understand how a signal is conformationaly transmitted within a heme protein matrix. Sandbar shark hemoglobin was examined as an example of a non-signaling an allosteric protein. Two different peroxidases (horseradish and soybean) which have a direct channel between the heme pocket and the solvent involving no barrier energetic for the photodissociated ligand leaving the heme pocket were examined as example of non-signaling, non-allosteric proteins. The results show that each protein has a unique thermodynamic profile to conformationaly transmit signals subsequent to photodissociation of CO, even within the same class of protein (i.e. PAS domains, globins, etc...).
4

Conformational Dynamics Associated with Ligand Binding to Vertebrate Hexa-coordinate Hemoglobins

Astudillo, Luisana 17 March 2014 (has links)
Neuroglobin (Ngb) and cytoglobin (Cygb) are two new additions to the globin family, exhibiting heme iron hexa-coordination, a disulfide bond and large internal cavities. These proteins are implicated in cytoprotection under hypoxic-ischemic conditions, but the molecular basis of their cytoprotective function is unclear. Herein, a photothermal and spectroscopic study of the interactions of diatomic ligands with Ngb, Cygb, myoglobin and hemoglobin is presented. The impact of the disulfide bond in Ngb and Cygb and role of conserved residues in Ngb His64, Val68, Cys55, Cys120 and Tyr44 on conformational dynamics associated with ligand binding/dissociation were investigated. Transient absorption and photoacoustic calorimetry studies indicate that CO photo-dissociation from Ngb leads to a volume expansion (13.4±0.9 mL mol-1), whereas a smaller volume change was determined for Ngb with reduced Cys (ΔV=4.6±0.3 mL mol-1). Furthermore, Val68 side chain regulates ligand migration between the distal pocket and internal hydrophobic cavities since Val68Phe geminate quantum yield is ~2.7 times larger than that of WT Ngb. His64Gln and Tyr44Phe mutations alter the thermodynamic parameters associated with CO photo-release indicating that electrostatic/hydrogen binding network that includes heme propionate groups, Lys 67, His64, and Tyr 44 in Ngb modulates the energetics of CO photo-dissociation. In Cygb, CO escape from the protein matrix is fast (< 40 ns) with a ΔH of 18±2 kcal mol-1 in Cygbred, whereas disulfide bridge formation promotes a biphasic ligand escape associated with an overall enthalpy change of 9±4 kcal mol-1. Therefore, the disulfide bond modulates conformational dynamics in Ngb and Cygb. I propose that in Cygb with reduced Cys the photo-dissociated ligand escapes through the hydrophobic tunnel as occurs in Ngb, whereas the CO preferentially migrates through the His64 gate in Cygbox. To characterize Cygb surface 1,8-ANS interactions with Cygb were investigated employing fluorescence spectroscopy, ITC and docking simulations. Two 1,8-ANS binding sites were identified. One binding site is located close to the extended N-terminus of Cygb and was also identified as a binding site for oleate. Furthermore, guanidinium hydrochloride-induced unfolding studies of Cygb reveal that the disulfide bond does not impact Cygb stability, whereas binding of cyanide slightly increases the protein stability.
5

Reaction Enthalpy and Volume Profiles for Excited State Reactions Involving Electron Transfer and Proton-Coupled Electron Transfer

Maza, William Antonio 01 January 2013 (has links)
Electron transfer, ET, and proton-coupled electron transfer, PCET, reactions are central to biological reactions involving catalysis, energy conversion and energy storage. The movement of electrons and protons in either a sequential or concerted manner are coupled in a series of elementary reaction steps in respiration and photosynthesis to harvest and convert energy consumed in foodstuffs or by absorption of light into high energy chemi-cal bonds in the form of ATP. These electron transfer processes may be modulated by conformational dynamics within the protein matrix or at the protein-protein interface, the energetics of which are still not well understood. Photoacoustic calorimetry is an estab-lished method of obtaining time-resolved reaction enthalpy and volume changes on the nanosecond to microsecond timescale. Photoacoustic calorimetry is used here to probe 1) the energetics and volume changes for ET between the self-assembled anionic uroporphy-rin:cytochrome c complex and the role of the observed volume changes in modulating ET within the complex, 2) the enthalpy and volume change for the excited state PCET reac-tion of a tyramine functionalized ruthenium(II) bis-(2,2'-bipyridine)(4-carboxy-4'-methyl-2,2'-bipyrine) meant to be a model for the tyrosine PCET chemistry carried out by cyto-chrome c oxidase and photosystem II, 3) the enthalpy and volume changes related to car-bon monoxide and tryptophan migration in heme tryptophan catabolic enzyme indoleam-ine 2,3-dioxygenase.

Page generated in 0.0883 seconds