Spelling suggestions: "subject:"photocatalytic boxidation"" "subject:"photocatalytic deoxidation""
11 |
Electrochemical and Photocatalytic Oxidation of Carbon and HydrocarbonsGuzman Montanez, Felipe 15 December 2009 (has links)
No description available.
|
12 |
Study of Surface Modification and Effect of Temperature on Charge Carrier Generation and RecombinationPattanapanishsawat, Piyapong 26 August 2010 (has links)
No description available.
|
13 |
Trace Contaminant Control: An In-depth Study Of A Silica-titania Composite For Photocatalytic Remediation Of Closed-environment Habitat AirCoutts, Janelle 01 January 2013 (has links)
This collection of studies focuses on a PCO system for the oxidation of a model compound, ethanol, using an adsorption-enhanced silica-Ti02 composite (STC) as the photocatalyst; studies are aimed at addressing the optimization of various parameters including light source, humidity, temperature, and possible poisoning events for use as part of a system for gaseous trace-contaminant control system in closed-environment habitats. The first goal focused on distinguishing the effect of photon flux (i.e., photons per unit time reaching a surface) from that ofphoton energy (i.e., wavelength) of a photon source on the PCO of ethanol. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV -A fluorescent black light blue lamp O·max=365 nm) at its maximum light intensity or a UV -C germicidal lamp O.·max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to C02 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV -C than by UV-A (38.4 vs. 31.9 nM s-1 ) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol C02 ~mol photons-1 ). UV-C irradiation also led to decreased intermediate concentration in the effluent compared to UV -A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy. The effect of temperature and relative humidity on the STC-catalyzed degradation of ethanol was also determined using the UV-A light source at its maximum intensity. Increasing ii temperature from 25°C to 65°C caused a significant decrease in ethanol adsorption (47.1% loss in adsorption capacity); minimal changes in EtOH removal; and ·a dramatic increase in mineralization (37.3 vs. 74.8%), PCO rate (25.8 vs. 53.2 nM s-1 ), and reaction quantum efficiency (42.7 vs. 82.5 nmol C02 J..Lmol phontons-1 ); intermediate acetaldehyde (ACD) evolution in the effluent was also decreased. By elevating the reactor temperature to 45°C, a -32% increase in reaction quantum efficiency was obtained over the use ofUV-C irradiation at room temperature; this also allowed for increased energy usage efficiency by utilizing both the light and heat energy of the UV-A light source. Higher relative humidity (RH) also caused a significant decrease (16.8 vs. 6.0 mg EtOH g STCs-1 ) in ethanol adsorption and dark adsorption 95% breakthrough times (48.5 vs.16.8 hours). Trends developed for ethanol adsorption correlated well with studies using methanol as the target VOC on a molar basis. At higher RH, ethanol removal and ACD evolution were increased while mineralization, PCO rate, and reaction quantum efficiency were decreased. These studies allowed for the development of empirical formulas to approximate EtOH removal, PCO rate, mineralization, and ACD evolution based on the parameters (light intensity, temperature, and RH) assessed. Poisoning events included long-term exposure to low-VOC laboratory air and episodic spikes of either Freon 218 or hexamethylcyclotrisiloxane. To date, all poisoning studies have shown minimal (0-6%) decreases in PCO rates, mineralization, and minimal increases in ACD evolution, with little change in EtOH removal. These results, while studies are still ongoing, show great promise of this technology for use as part of a trace contaminant control system for niche applications such as air processing onboard the ISS or other new spacecrafts.
|
14 |
Modelling of Petroleum Wastewater Photodegradation in a Fluidized Bed ReactorNyembe, N. 04 1900 (has links)
M.Tech. (Department of Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology / Petroleum wastewater is highly contaminated with toxic organic pollutants that are harmful to the environment. The heterogeneous photocatalytic oxidation (HPO) process has shown the ability to remove these pollutants through the application of a fluidized bed reactor (FBR). The purpose of the study was to apply response surface modelling (RSM) and computational fluid dynamics (CFD) to optimize the operating conditions for the photodegradation process in an FBR. This was done by investigating the hydrodynamics, photodegradation efficiency and reaction kinetics; that gave a holistic view on the performance of the FBR.
The hydrodynamic study focused on modelling the axial liquid velocity, gas hold-up and turbulence quantities due to their substantial impact on the design and performance of the FBR. This was done by implementing the Eulerian-Eulerian approach which solves the continuity and momentum equations for each phase. In addition, the standard k-ε turbulence model was used to capture the turbulent characteristics in the liquid phase. A numerical optimization technique (desirability) was used to determine the optimal simulation setting methods; that were found to be a fine grid size (500 000 cells), 2nd Order Upwind discretization scheme and a small time step size (0.001) and gave the best desirability (0.985). The axial liquid velocity was maximal towards the centre of the reactor and decreased towards the wall. The same trend was seen with the local gas hold-up, where it was high towards the centre and low near the wall region. This was an indication that the bubbles tended to gather towards the central region as they move up. Furthermore, the bubbles had a spherical–like shape due to the low superficial gas velocity and operating within the homogeneous regime. The turbulent kinetic energy increased at distances away from the distributor region, due to the bubbles accelerating, and it balanced well with the energy introduced by the bubbles.
Central composite design (CCD), which is a type of response surface modelling technique, was used to investigate and optimize the photodegradation operating parameters. The maximal degradation efficiency in the current study was found to be 65.9%, which was relatively low when compared to literature (80.84%). This was attributed to the increase in the catalyst particle size from nanometer to micrometer. Furthermore, the second-order empirical model that was developed, using the analysis of variance (ANOVA), presented a sufficient correlation to the photodegradation experimental data. The optimal photodegradation operating conditions were found to be: superficial gas velocity of 17.32 mm/s, composite catalyst loading of 1.0 g/L, initial pH level of 3.5 and reaction time being 210 min. Using the Langmuir-Hinshelwood model, it was found that the photocatalytic degradation of petroleum wastewater follows pseudo first-order reaction kinetics. Since the photocatalytic degradation mechanism of phenol follows three stages whereby the second stage is the photocatalytic degradation on the surface of the catalyst to form by-products. This is the rate dominant stage and follows the pseudo firstorder reaction kinetics.
|
15 |
Photocatalytic oxidation of volatile organic compounds for indoor air applicationsBayless, Lynette Vera January 1900 (has links)
Master of Science / Department of Chemical Engineering / Larry E. Erickson / Photocatalytic oxidation (PCO) is a promising and emerging technique in controlling indoor air contaminants, including volatile organic compounds (VOCs). It has broad air cleaning and deodorization applications in indoor environments ranging from residential and office buildings to healthcare and nursing facilities as well as spacecrafts, aircraft cabins and clean rooms in the agricultural and food industry. Numerous studies have been conducted to improve the effectiveness and performance of this technology. These include development of new configurations, energy-efficient catalysts and other parameters to control the process. However, only limited research has been conducted under realistic indoor environmental conditions. One of the most recent developments in photocatalysis is the synthesis of 2% C- and V-doped TiO[subscript]2, which is active under both dark and visible light conditions. However, like most research conducted in photocatalysis, the study on the reactivity of this catalyst has been performed only under laboratory conditions. This study investigated the possible application of the novel C and V co-doped TiO[subscript]2 in cleaning indoor air. Mathematical modeling and simulation techniques were employed to assess the potential use of some of the promising systems that utilize the catalyst (i.e., packed bed and thin films) as well as the effect of mass transfer limitations in the degradation of acetaldehyde, one of the VOCs that can be found in offices, residential buildings and other facilities.
|
16 |
Isolation Of Antimicrobial Molecules From Agricultural Biomass And Utilization In Xylan-based Biodegradable FilmsCekmez, Umut 01 January 2010 (has links) (PDF)
Cotton stalk lignin extractions were performed via alkaline methods at different conditions. Crude and post treated cotton stalk lignins, olive mill wastewater and garlic stalk juice were examined in terms of antimicrobial activity. Antimicrobial lignin was isolated depending on alkaline extraction conditions. Lignin extracted at 60° / C exhibited significant antimicrobial effect towards both Escherichia coli and Bacillus pumilus. However different post treatments such as ultrasonication and TiO2-assisted photocatalytic oxidation did not result in antimicrobial compounds. Olive mill wastewater and garlic stalk juice exerted substantial antimicrobial effects towards tested microorganisms.
Xylan-based biodegradable films containing lignin, garlic stalk juice, tannic acid and olive mill wastewater were characterized against both B. pumilus and E. coli by means of their antimicrobial activities. E. coli exhibited lesser sensitivity to all tested antimicrobial xylan films except tannic acid-integrated xylan film than B. pumilus. Antimicrobial lignin integrated-xylan film exhibited stronger effect towards tested microorganisms than tannic acid-integrated film. In the case of both antimicrobial lignin and tannic acid integrated xylan films, 4% was found to be the maximum antimicrobial compound percentage in film forming solutions to observe continuous film formation.
Lignin samples with/without antimicrobial activity were characterized by means of their chemical structure via FTIR and LC-MS. FTIR results revealed that cotton stalk lignins were significantly broken down via alkaline treatment and this breakdown resulted in the formation of new fractions and also ester & / ether bonds between antimicrobial hydroxycinnamic acids and lignin were cleaved during the alkaline treatments of cotton stalk lignins. By FTIR results, C=C bonds were found to be characteristic for antimicrobial lignin sample and it was suggested that these bonds might be the reason of the antimicrobial activity. By LC-MS qualitative mass analysis, antibacterial lignin fractions were found to be quite different from non-antibacterial lignin fractions. LC-MS results indicated that the antimicrobial lignin fractions might be lignin-derived oligomers and/or might be flavonoids. Cotton stalk lignin fractions demonstrated different antimicrobial activities depending on the method of isolation and chemical treatment.
|
17 |
Bulk TiO2 vs alternative Ti-based photocatalysts for the mild aerobic oxidation of alcohols / Masse de TiO2 versus photocatalyseurs alternatifs à base de titane de l’oxydation ménagée et aérobie d’alcoolsObaid, Diaa 26 October 2017 (has links)
Des oxydes semi-conducteurs, en particulier TiO2 commercialement disponible ou des échantillons mésoporeux synthétisés, ont été testés comme photocatalyseurs de l'oxydation ménagée et aérobie d'alcools dans l'acétonitrile sous UV. L'alcool benzylique a été oxydé principalement en benzaldéhyde (rendement = 60%) en présence de TiO2-P25. Malheureusement, ce catalyseur tend à se désactiver. Le rôle du dioxygène dans le processus d'oxydation a été souligné après avoir testé différents solvants. Les alcools aliphatiques ont également été étudiés. Ainsi, le cyclohexanol a donné principalement de la cyclohexanone (rendement = 70%). Parallèlement, une approche colloïdale a été développée pour déposer les nanoparticules d'oxyde de titane sur des supports de silice mésoporeux SBA-15 transparents aux UV afin d'éviter les phénomènes d'agrégation lors des tests. Après optimisation de leur synthèse (quantité d'eau, nature de l'acide et de l'alcool), des nanoparticules sphériques non cristallines stables de 5 nm de diamètre ont été obtenues. En utilisant la méthode d'imprégnation à "deux solvants", ces dernières ont été introduites avec succès dans les mésopores de deux échantillons de SBA-15, l'un avec un diamètre moyen des pores de 6 nm, l'autre de 8. Les analyses MET ont souligné que le matériau SBA-15 avec les pores les plus grands a conduit à l'incorporation de davantage de nanoparticules. A priori, les interactions silice / oxyde de titane dans les matériaux résultants semblent favorables puisque les quantités inférieures de TiO2 dans les tests de photocatalyse correspondants ont conduit à de meilleurs taux de conversion que ceux obtenus avec P25 ou la suspension mère de colloïdes. / A series of metal oxides semiconductors, including commercially available TiO2 or synthesized mesoporous samples, were tested as photocatalysts for the aerobic mild oxidation of alcohols in acetonitrile under UV. Benzyl alcohol, used as a reference, was oxidized mainly into benzaldehyde. Best yield (60%) was obtained with TiO2-P25. Unfortunately, this catalyst tended deactivate with time. The role of dioxygen solubility in the oxidation process was emphasized through the test of different solvents. Aliphatic alcohols were also studied. Among them, cyclohexanol gave mainly cyclohexanone with a yield of 70%. Parallely, a colloidal approach was developed for the deposition of titanium oxide nanoparticles on UV transparent mesoporous silica supports in order to take advantage of their important specific surface area and avoid aggregation phenomena during the photocatalysis tests. After optimizing the synthesis protocol (amount of water, nature of the acid and alcohol), spherical, non-crystalline stable nanoparticles with 5 nm diameter were obtained. Using the “two-solvents” impregnation method, these particles were successfully introduced in the mesopores of two SBA-15 silica samples differing by their mean pore diameter (either 6 or 8 nm). TEM measurements emphasized that the SBA-15 material with the largest pores led to the incorporation of more nanoparticles in its mesopores. Clearly, silica/ titanium dioxide interactions in the resulting materials appeared to play a positive role since lower amounts of TiO2 in the corresponding photocatalysis tests led to improved conversion rates of benzylalcohol compared to those performed with P25 or the parent suspension of colloids.
|
18 |
Adsorption and photocatalysis in water treatment:active, abundant and inexpensive materials and methodsPirilä, M. (Minna) 28 April 2015 (has links)
Abstract
Water contamination is a global problem and the growing utilization of limited water resources creates a need for efficient purification methods. Industrial effluents are polluting the natural waters, e.g. uncontrolled mining activities in developing countries have created numerous environmental hazards and different types of pollutants. This study focuses on novel adsorbents and photocatalytic materials in order to reach the aim of more efficient and affordable water treatment.
This thesis aimed at making active, efficient, and viable adsorbents out of waste materials, as well as using photocatalysis in water treatment for organic pollutants originating from different types of industries. Local Peruvian agro-waste was used as a precursor for activated carbon that was used in adsorption studies for single (As(V) and methylene blue, MB), and multicomponent mixtures (As(V)/Pb/Cd), and real polluted river water. An industrial intermediate product, hydrous TiO2, was used for As(III)/As(V) removal. Photocatalytic materials included a commercial photoactive TiO2 (P25), and tailor-made TiO2 based nanofibers (NF) decorated with Pt/Pd.
The results show that the agro-waste based activated carbons show high potential as adsorbents (e.g. ~100% As(V) removal in 2 h). With the multicomponent solution there is evidently competition for the adsorption sites; Pb was removed most efficiently. The specific surface area and pore size distribution play an important role in MB adsorption, as with As(V) the ash content is the most influential parameter. The industrial intermediate product has a high adsorption capacity towards both As(III) and As(V) (over 96% removals in 4 h), and is promising for use in natural and wastewater treatment due to its adsorption properties, availability, low cost, and non-toxicity. Photocatalysis was found to be an efficient removal method for the pollutants tested, also in the diluted industrial wastewater matrix, e.g. diuron was removed 99% in 1 h. The NFs are promising for the efficient photocatalytic degradation of organic effluents in aqueous streams such as wastewaters originating from e.g. biofuel production or fine chemicals and pharmaceutical industry. This study provides new and valuable knowledge for the purification of waters, especially when aiming at developing inexpensive water treatment materials and methods for different applications. / Tiivistelmä
Puhtaan veden puute on maailman laajuinen ongelma, ja raskasmetallien ja orgaanisten haitta-aineiden päätymistä ympäristöön ja luonnonvesiin voidaan vähentää hyvällä ja tehokkaalla teollisuuden jätevesien käsittelyllä. Uusia ja tehokkaita, ympäristön kannalta suotuisia ja kestäviä vedenpuhdistustekniikoita tarvitaan erityisesti kehitysmaissa, joissa esim. kontrolloimaton kaivostoiminta aiheuttaa ympäristö- ja terveyshaittoja.
Työn kokeellisessa osassa valmistettiin perulaisesta maatalousjätteistä aktiivihiiltä kemiallisella aktivoinnilla, ja seurattiin niiden kykyä adsorboida haitta-aineita (As(V), Pb, Cd, metyleenisini) yksi- ja monikomponenttiliuoksista ja saastuneesta luonnonvedestä (Puyango-Tumbesjoki, Peru). Lisäksi tutkittiin teollisuuden välituotteen (TiO2) aktiivisuutta arseenin, As(III) ja As(V), adsorptiossa. Viimeisessä osiossa tutkittiin valokatalyysiä orgaanisten haitta-aineiden poistossa vesiliuoksista sekä kaupallisella TiO2 P25 -katalyytillä että kokeellisilla Pd/Pt-dopatuilla TiO2 -nanokuiduilla.
Tulokset osoittavat, että paikallisesta raaka-aineesta valmistetut aktiivihiilet ovat hyvin potentiaalisia vedenpuhdistusmateriaaleja saavuttaen jopa 100% As(V) poistuman (2h). Adsorboitavien ionien välillä on nähtävissä kilpailua monikomponettiadsorptiossa; lyijyn havaittiin poistuvan tehokkaimmin tutkituissa olosuhteissa. Adsorbentin ominaispinta-ala ja huokoskokojakauma ovat tärkeitä tekijöitä metyleenisinin adsorptiossa, kun taas tuhkapitoisuudella on arseenin adsorptioon suurempi vaikutus. Teollisuuden TiO2-välituotteella havaittiin olevan korkea adsorptiokapasiteetti sekä As(III)- että As(V)-spesieksiä kohtaan saavuttaen yli 96% poistumat (4h). Se on lupaava materiaali edelleen kehitettäväksi ja käytettäväksi esimerkiksi luonnonvesien ja jätevesien puhdistuksessa johtuen sen hyvistä adsorptio-ominaisuuksista, saatavuudesta, edullisuudesta ja myrkyttömyydestä. Valokatalyysin havaittiin olevan toimiva menetelmä orgaanisten molekyylien hajottamiseen, myös laimeasta teollisuuden jätevesimatriisista, esim. diuroni poistui 99% tunnissa. Nanokuitujen tapauksessa aktiivinen metalli vaikutti merkittävämmin reaktion tehokkuuteen kuin ominaispinta-ala.
Tämä työ tarjoaa uutta ja tärkeää tietoa vesien puhdistukseen kun tavoitteena on löytää tehokas ja edullinen menetelmä erityyppisiin sovelluksiin.
|
19 |
Textile lumineux en fibres optiques pour une application photocatalytique en phase gazeuse / Lighted textile with optical fibres for a photocatalytic application in gas phaseBourgeois, Pierre-Alexandre 25 March 2011 (has links)
La pollution de l'air intérieur est un enjeu majeur pour la santé humaine. Pour réduire les concentrations de polluants des milieux confinés, notre étude s'est basée sur la conception et les tests d'un nouveau média photocatalytique innovant composé de textile rendu lumineux grâce à la présence de fibres optiques microstructurées. Le textile est rendu photocatalytique après ajout de TiO2 en suivant différentes méthodes de dépôt. Les fibres optiques ont alors deux rôles fondamentaux : premièrement d'être le support du catalyseur et deuxièmement d'être le moyen d'amener le rayonnement UVA au coeur du lit photocatalytique. La rencontre des trois constituants de la photocatalyse, les photons UV, le catalyseur et le polluant, est alors favorisée par l'utilisation de ce type d'échantillon. Les propriétés structurales et optiques de ce nouveau matériau ont été caractérisées par des analyses de surface (microscopie otique et microscopie électronique à balayage environnementale (MEBE)), des mesures d'irradiance UV et des analyses permettant de localiser le TiO2 à la surface de l'échantillon (Raman et MEB‐EDX). L'influence de différents paramètres tels que la structure textile, la méthode de dépôt, les caractéristiques d'irradiation, les débits molaires sur la dégradation de deux composés organiques volatiles, le formaldéhyde et le toluène, a été étudiée et corrélée aux propriétés physicochimiques du matériau / The indoor air pollution is a major challenge for human health. To reduce the concentrations of pollutants in confined area, our study is based on the design and testing of a new innovative photocatalytic media composed of textile which is lighted with microstructured optical fibres. The textile becomes photocatalytic after the coating of TiO2 with different methods. The optical fibers have then two fundamental roles: first to be the catalyst support and secondly to be the light transmission support from the source into the photocatalytic bed. The meeting of the three constituents of photocatalysis (UV photons, catalyst and pollutants) is then enhanced by the use of this type of sample. The structural and optical properties of this new material were characterized by surface analysis (optical microscopy and electronic secondary electron microscopy (ESEM)), with measurements of UV irradiance and methods to determinate the location of the TiO2 on the sample surface (Raman spectroscopy and EDX‐SEM). The influence of different parameters such as textile structure, coating method, irradiation characteristics, molar flow on the degradation of two volatile organic compounds, formaldehyde and toluene, was studied and correlated to the physical‐chemical properties of the material
|
20 |
Evaluation of the performance of photocatalytic systems for the treatment of indoor air in medical environments / Evaluation de la performance des systèmes photocatalytiques pour le traitement de l'air intérieur en milieu médicalWhyte, Henrietta Essie 07 December 2018 (has links)
La photocatalyse est une technologie d’oxydation avancée qui peut être utilisée pour améliorer la qualité de l'air dans les environnements intérieurs et pourrait être mise en œuvre dans les milieux médicaux. Dans les hôpitaux, les salles d'opération sont très exigeantes en matière de qualité de l'air intérieur et nécessitent des systèmes qui minimisent les concentrations des polluants générés par les différentes activités. Dans ce travail, le devenir de deux polluants spécifiques des blocs opératoires, l’acrylonitrile (produit chimique trouvé dans la fumée chirurgicale) et l'isoflurane (gaz anesthésique) lorsqu'ils passent dans un dispositif de traitement d’air photocatalytique est étudié. Tout d'abord, une évaluation paramétrique de la dégradation de l'isoflurane et de l'acrylonitrile en étudiant l'influence de la vitesse de l'air, de l'intensité lumineuse, de la géométrie du média photocatalytique, de la concentration initiale en polluants, de la présence de co-polluants chimiques, de la présence de particules et l’humidité relative sur leur efficacité de dégradation est réalisée. En second lieu, l’innocuité de l’utilisation de ce procédé pour la dégradation de l’isoflurane et de l’acrylonitrile par l’identification des éventuels intermédiaires formés au cours de leur dégradation est étudiée. Les expériences sont menées dans un réacteur dynamique en boucle fermée conçu pour étudier les polluants à faibles concentrations. Enfin, pour mieux comprendre comment le changement de géométrie du média photocatalytique influence l'efficacité de la dégradation, des simulations avec ANSYS14.5 sont effectuées et discutées au regard des résultats expérimentaux. / Photocatalytic oxidation (PCO) is an advanced air cleaning technology that is used asa means to improve air quality in indoor environments and could potentially be used inthe operating rooms (OR). In hospitals, operating rooms (ORs) are very demanding interms of the indoor air quality (IAQ) and require systems that minimize the concentrations of pollutants. In this work, the fate of two OR pollutants acrylonitrile (chemical found insurgical smoke) and isoflurane (anesthetic gas) when they go through a PCO device was investigated. Firstly, a parametric evaluation on the degradation of isoflurane and acrylonitrile by studying the influence of air velocity, light intensity, the change in media geometry, initial pollutant concentration, presence of chemical co-pollutants, presence of particles (bioaerosols) and relative humidity on their degradation efficiencies is performed. Secondly the safety of the use of PCO for the degradation of isoflurane and acrylonitrile through the identification of possible intermediates formed during their degradation is evaluated. The experiments were conducted in a closed loop reactor which has been designed to study low concentration air pollutants and has also been recently modeled. Finally, to better understand how the change in media geometry influenced the degradation efficiency, simulations with ANSYS 14.5 were performed and discussed.
|
Page generated in 0.3745 seconds