Spelling suggestions: "subject:"photocatalytic reactor"" "subject:"hotocatalytic reactor""
1 |
Ανάπτυξη και σχεδιασμός καινοτόμων φωτοκαταλυτικών αντιδραστήρων για ενεργειακές και περιβαλλοντικές εφαρμογέςΝομικός, Γιώργος 17 April 2013 (has links)
Σκοπός της παρούσας εργασίας είναι η κινητική μελέτη της αντίδρασης παραγωγής υδρογόνου μέσω φωτοκαταλυτικής αναμόρφωσης της μεθανόλης και η ανάπτυξη μοντέλου για την περιγραφή του πεδίου της ακτινοβολίας στον πειραματικό φωτοαντιδραστήρα. Τα αποτελέσματα μπορούν να χρησιμοποιηθούν για τον υπολογισμό των κινητικών παραμέτρων της αντίδρασης και τον προσδιορισμό των σχεδιαστικών παραμέτρων που απαιτούνται για την ανάπτυξη και βελτιστοποίηση κατάλληλου φωτοαντιδραστήρα.
Η φωτοκαταλυτική διάσπαση του νερού με χρήση ημιαγωγών και ηλιακής ακτινοβολίας αποτελεί μια από τις πλέον υποσχόμενες διεργασίες για τη φωτοχημική μετατροπή και αποθήκευση της ηλιακής ενέργειας. Η αντίδραση μπορεί να λάβει χώρα μέσω διέγερσης ενός ημιαγωγού (π.χ. TiO2) από φωτόνια με ενέργεια ίση ή μεγαλύτερη από το ενεργειακό του χάσμα. Το αποτέλεσμα είναι η προώθηση ενός ηλεκτρονίου από τη ζώνη σθένους (VB) στη ζώνη αγωγιμότητας (CB) του υλικού και η δημιουργία μιας οπής στην ζώνη αγωγιμότητας:
(1)
Η συνήθης τύχη των φωτοπαραγόμενων φορέων φορτίου είναι η (μη επιθυμητή) επανασύνδεσή τους, που συνοδεύεται από έκλυση της αποθηκευμένης ενέργειας με τη μορφή θερμότητας:
(2)
Οι φωτοπαραγόμενες οπές και τα ηλεκτρόνια που καταφέρνουν να φθάσουν στην επιφάνεια του ημιαγωγού μπορούν, υπό ορισμένες προϋποθέσεις, να εκκινήσουν αντιδράσεις για την παραγωγή οξυγόνου και υδρογόνου μέσω οξείδωσης και αναγωγής του νερού, αντίστοιχα:
(3)
(4)
Το πρόβλημα είναι ότι ο ρυθμός παραγωγής υδρογόνου είναι πολύ μικρός, κυρίως λόγω της εγγενώς μικρής κβαντικής απόδοσης της διεργασίας, η οποία καθορίζεται από την αντίδραση επανασύνδεσης ηλεκτρονίου-οπής (Εξ.2). Η αντίδραση επανασύνδεσης μπορεί να κατασταλεί παρουσία κατάλληλων “θυσιαζόμενων” ενώσεων στο διάλυμα, οι οποίες αντιδρούν ταχέως και μη αντιστρεπτά με τις φωτοπαραγόμενες οπές. Με τον τρόπο αυτό αυξάνεται ο χρόνος ζωής των ηλεκτρονίων και, επομένως, ο ρυθμός παραγωγής υδρογόνου μέσω της Εξ. 4. Ως θυσιαζόμενες ενώσεις μπορούν να χρησιμοποιηθούν χαμηλού ή “αρνητικού” κόστους οργανικές ενώσεις, όπως παραπροϊόντα και παράγωγα βιομάζας. Οι ενώσεις αυτές οξειδώνονται προοδευτικά από τις οπές προς CO2, με αποτέλεσμα τα φωτοπαραγόμενα ηλεκτρόνια να ανάγουν αποδοτικά το νερό προς παραγωγή Η2. Η συνολική διεργασία μπορεί να περιγραφεί από την ακόλουθη γενική αντίδραση αναμόρφωσης:
(5)
Χαρακτηριστικά πλεονεκτήματα της μεθόδου αποτελούν ο σχετικά υψηλός ρυθμός παραγωγής υδρογόνου και το γεγονός ότι, σε αντίθεση με τις συνήθεις θερμοκαταλυτικές αντιδράσεις αναμόρφωσης, η αντίδραση πραγματοποιείται σε συνθήκες περιβάλλοντος. Επιπροσθέτως, η παραγωγή υδρογόνου μπορεί να λάβει χώρα με ταυτόχρονη αποικοδόμηση οργανικών ρύπων, με προφανή περιβαλλοντικά οφέλη.
Ένα άλλο σημαντικό πρόβλημα που σχετίζεται με τις περιορισμένες εφαρμογές των φωτοκαταλυτικών μεθόδων σε πιλοτική και βιομηχανική κλίμακα οφείλεται στη δυσκολία σχεδιασμού και ανάπτυξης αποδοτικών φωτοαντιδραστήρων. Το πρόβλημα του σχεδιασμού έγκειται στο γεγονός ότι, σε αντίθεση με τους συμβατικούς καταλύτες, η ενεργοποίηση ενός φωτοκαταλύτη δε γίνεται θερμικά αλλά μέσω απορρόφησης φωτονίων κατάλληλης ενέργειας. Επομένως, για την μοντελοποίηση ενός φωτοαντιδραστήρα απαιτείται, εκτός από τη χρήση των συνήθων εξισώσεων για τα ισοζύγια μάζας, θερμότητας και ορμής, μια επιπλέον εξίσωση για την περιγραφή του ισοζυγίου της ενέργειας της ακτινοβολίας στο σύστημα. Η εξίσωση αυτή χρησιμοποιείται για τον υπολογισμό του “τοπικού ογκομετρικού ρυθμού απορρόφησης ενέργειας” (local volumetric rate of energy absorption, LVREA), ο οποίος αποτελεί μια από τις σημαντικότερες σχεδιαστικές παραμέτρους ενός φωτοαντιδραστήρα διότι περιγράφει την ποσότητα των φωτονίων που απορροφούνται ανά μονάδα όγκου σε κάθε σημείο του αντιδραστήρα. Για τον σχεδιασμό του αντιδραστήρα είναι επίσης απαραίτητη και μία έκφραση του ρυθμού της αντίδρασης. Για την εξαγωγή αυτής της έκφρασης απαιτείται η εύρεση του ρυθμού του βήματος ενεργοποίησης μέσω ακτινοβολίας, ο οποίος εκφράζεται συναρτήσει του LVREA. Εφόσον ο ρυθμός αυτός είναι γνωστός μπορεί να εισαχθεί στο κινητικό μοντέλο της αντίδρασης ενώ οι διάφορες κινητικές παράμετροι μπορούν να υπολογιστούν πειραματικά. Μεταξύ των προσεγγίσεων που έχουν προταθεί για τον υπολογισμό του LVRΕA, οι πιο ακριβείς περιλαμβάνουν την αριθμητική επίλυση της εξίσωσης μεταφοράς ακτινοβολίας (radiation transfer equation, RTE).
Στην παρούσα εργασία χρησιμοποιείται η μέθοδος των “φασματικών στοιχείων” (spectral elements) για την επίλυση ενός μονοδιάστατου μοντέλου για την περιγραφή του πεδίου της ακτινοβολίας και τον υπολογισμό του LVREA σε έναν πειραματικό αντιδραστήρα, στον οποίο περιέχεται ο φωτοκαταλύτης σε μορφή αιωρήματος. Η αντίδραση που μελετάται είναι η παραγωγή υδρογόνου μέσω της φωτοκαταλυτικής αναμόρφωσης της μεθανόλης (Εξ. 6) σε αιώρημα καταλύτη 0.5%Pt/TiO2, το οποίο ακτινοβολείται με φως στη περιοχή που απορροφά το TiO2.
(6)
Σύμφωνα με το μοντέλο που αναπτύχθηκε, ο ρυθμός της φωτοκαταλυτικής αντίδρασης εξαρτάται από τη συγκέντρωση του καταλύτη στο αιώρημα, την ειδική ένταση ακτινοβολίας και τη συγκέντρωση του αντιδρώντος στο διάλυμα. Για τον σκοπό αυτό, μελετήθηκε στην παρούσα εργασία η επίδραση των λειτουργικών παραμέτρων της αντίδρασης, όπως η ένταση της προσπίπτουσας ακτινοβολίας (Ι0), η συγκέντρωση του φωτοκαταλύτη (Ccat) και η συγκέντρωση της μεθανόλης, (CMeOH) στο ρυθμό παραγωγής Η2 (rH2). Από τα αποτελέσματα προκύπτει ότι ο ρυθμός παραγωγής υδρογόνου εξαρτάται ισχυρά από τη συγκέντρωση του οργανικού υποστρώματος και αυξάνει κατά σχεδόν δύο τάξεις μεγέθους με αύξηση της CMeOH από 0 σε 1 mol L-1. Επιπλέον, αύξηση του ρυθμού επιτυγχάνεται με αύξηση του Ι0. Τα αποτελέσματα των φωτοκαταλυτικών πειραμάτων μπορούν να χρησιμοποιηθούν για τη μοντελοποίηση του συστήματος και το σχεδιασμό φωτοκαταλυτικού αντιδραστήρα για την παραγωγή υδρογόνου. / Heterogeneous photocatalytic reactions occurring at the surface of illuminated semiconductors, especially TiO2, have been the subject of extensive investigation in the last few years. This is because of the high potential of photocatalytic processes for a wide range of applications, which include mineralization of organic pollutants, disinfection of water and air, production of renewable fuels, and organic syntheses. Although remarkable progress has been made in fundamental research, applications in pilot and industrial scale are still in their infancy. This is mainly due to the lack of efficient solar photocatalysts and the difficulty of designing photoreactors able to integrate maximum light efficiency and mass transfer within one piece of equipment.
Regarding photoreactor design, complications arise from the mode of photocatalyst activation, which involves excitation of the semiconductor photocatalyst by photons of appropriate energy. Thus, in addition to the usual equations for mass, heat and momentum balances, photoreactor modelling requires an additional equation to describe the balance of radiation energy in the system. This equation is used to calculate the "local volumetric rate of energy absorption" (LVREA) which describes the amount of photons absorbed per unit volume at each point of the reactor and provides one of the major photoreactor design parameters. The LVREA depends on the characteristics of the incident radiation, the optical properties of the system, the type and concentration of the photocatalyst and the geometry of the reactor. Therefore, calculation of the LVREA requires knowledge of the distribution of the radiation field inside the reactor. Among the various approaches proposed to calculate the LVREA, the most accurate ones are those that solve numerically the “radiation transfer equation” (RTE). This requires the development of a mathematical model that describes the emission model of the radiation source and the radiation field inside the reactor.
In the present work, we have developed a one-dimensional spectral element algorithm for the description of the radiation field and the calculation of the LVREA in an experimental photoreactor containing the photocatalyst (Pt/TiO2) in suspension. The target reaction investigated was the photocatalytic reforming of methanol for hydrogen production (CH3OH+H2O→3H2+CO2). The radiation source used was a light emitting diode (LED), which emits radiation at wavelengths (λmax=390 nm) corresponding to the bandgap of TiO2 (3.2 eV). Our results refer to the effect of operating parameters such as incident light intensity (I0), photocatalyst content (CTiO2), and methanol concentration (CMeOH) on the rate of H2 production (rH2). They show that rH2 depends strongly on methanol concentration and increases by almost 2 orders of magnitude when CMeOH is increased from 0 to 1 mol L-1. A substantial enhancement of rH2 is also observed with increasing I0 or CTiO2. Results of photocatalytic experiments and photoreactor modelling are used to extract kinetic parameters for the methanol photoreforming reaction.
|
2 |
Mise au point d'un réacteur photocatalytique pour la dépollution de l'eau / Development of a photocatalytic reactor for wastewater treatmentZekri, Mohamed el Mehdi 25 September 2012 (has links)
L’objectif de cette étude est de mettre au point une méthodologie de travail dédiée à la conception d’un réacteur photocatalytique pour la purification des eaux. Notre ambition étant de passer de la photocatalyse comme processus chimique à la photocatalyse comme procédé de dépollution. Pour cela il nous a paru nécessaire de répondre à deux questions, à savoir : - Dans un tel système, quels seront les phénomènes physico-chimiques majeurs mis en jeux ? -Y-a-t’il un moyen de prédire les performances de notre système ?Tout d’abord, nous avons essayé de travailler sur des photocatalyseurs en suspension, donc non immobilisés sur un support. Le but est d’éviter une étape de filtration couteuse et techniquement difficile. Ainsi différents types de dioxyde de titane ont été déposés sur des supports de différentes géométries.Le premier média obtenu était du dioxyde de titane commercial (P25 de Evonik et UV100 de Sachtleben) déposé sur des billes en verre de diamètre 2 et 4 mm, introduit dans un réacteur annulaire siège de la réaction de dégradation photocatalytique et éclairé par une seule source de lumière UV. La photoactivité de ce média a été testée sur du phénol, le polluant primaire modèle choisi dans cette étude. L’hydroquinone et la benzoquinone, deux de ses principaux intermédiaires de dégradation ont également été analysés. L’efficacité du dépôt a ainsi été calculée sur les différentes configurations obtenues. Les résultats ont été satisfaisants sans arriver à avoir un niveau de photoactivité comparable à celui du TiO2 en mode suspension. Nous avons donc cherché à améliorer les performances de notre système réactionnel en travaillant sur un support ayant une autre géométrie. Notre choix s’est porté sur des mousses en alumine épousant parfaitement le vide réactionnel. Le même protocole expérimental a été appliqué à ces dernières. Les résultats de photodégradation ont montrés une durabilité meilleure que celle obtenue sur les billes en verre, mais aussi une photoperformance dépassant celle réalisée sur du dioxyde de titane en mode suspension.Afin de mieux comprendre les différences de photoactivité entre les supports, nous avons tenté de simuler, par la méthode Monte Carlo, la propagation de la lumière à travers les photocatalyseurs, qu’ils soient en mode suspension ou déposés. Les résultats ont montrés que le dioxyde de titane en suspension avait le meilleur taux d’absorption de la lumière comparé au TiO2 fixé sur les supports. Néanmoins l’absorption se fait sur un volume très petit du réacteur et la meilleure répartition de l’énergie lumineuse se trouve dans les mousses en alumine.Les données issues de ces simulations notamment, la LVRPA pour « Local Volumetric Rate of Photon Absorption » nous ont permis d’entamer la dernière étape de notre travail à savoir la construction d’un modèle prédictif des performances photocatalytiques du système réactionnel. Nous avons pour cela introduit un terme qui traduit la probabilité qu’un photon absorbé par le photocatalyseur donne un radical hydroxyle. Les résultats obtenus par notre environnement mathématique ont montrés de bonnes corrélations avec les expériences et ont permis de tirer certaines conclusions quand à l’amélioration de notre système photocatalytique. / The objective of this work is to develop a methodology dedicated to the design of a photocatalytic reactor for water purification. The principle is to go from photocatalysis as chemical process to photocatalysis as remediation method.Iit necessary for that to respond to two questions: - In such a system, what are the major physico-chemical phenomena? - Is there a way to predict the performance of our system?First of all, we tried to work on suspended photocatalysts to avoid a costly filtration step and technical difficulties. Thus, different types of titanium dioxide were deposited on substrates of different geometries.The first obtained medium was commercial titanium dioxide (P25 from Evonik and UV100 from Sachtleben) deposited on glass beads of 2 and 4 mm, inserted into an annular reactor illuminated by a single UV light source. The photoactivity of this media has been tested on phenol, the primary pollutant model chosen in this study. Hydroquinone and benzoquinone, two of its main degradation intermediates were also analyzed. The deposition efficiency has been estimated on different configurations. The results were satisfactory but did not reach a level comparable to that of photoactivity of TiO2 in suspend mode. Thus, we sought to improve the performance of our reaction system working on a support having a different geometry. Our choice fell on alumina foams perfectly matching the vacuum in the reactor. The same experimental protocol was applied to the foam. The results have shown photodegradation durability better than that obtained on glass beads and also the photoperformance exceeding that of titanium dioxide in suspend mode.To understand better the photoactivity of our media, we simulated by the Monte Carlo method the propagation of the light through the different photocatalysts (suspend mode or deposited). The results showed that the titanium dioxide suspension had the best absorption of light compared to TiO2 fixed on media. Nevertheless, absorption was located on a very small volume of the reactor and a better distribution of the light energy occurs in the alumina foams.The data obtained from these simulations, including the LVRPA "Local Volumetric Rate of Photon Absorption", allowed us to achieve the final step of our work, which is the construction of a predictive model of photocatalytic performance of the reaction system. Thus, we have introduced a term that reflects the probability that a photon absorbed by the photocatalyst gives a hydroxyl radical. The results obtained by our mathematical environment have shown a good correlation with experiments and helped us to draw some conclusions for the improving of our photocatalytic system.
|
3 |
Hybrid light photocatalysis of aromatic wastes in a fluidized bed reactorAkach, John Willis Juma Pesa 08 1900 (has links)
PhD. (Department of Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / The use of solar photocatalysis for the treatment of aromatic chemicals like phenol in wastewater has attracted significant attention due to the low cost of sunlight. However, sunlight is unreliable since its intensity fluctuates during the day. This drawback can be addressed by supplementing sunlight with artificial UV lamps when the solar intensity reduces. In this work, such a hybrid solar/UV lamp reactor, internally illuminated by the UV lamp and externally by sunlight, was designed. Phenol was used as the model pollutant and the nanophase Aeroxide P25 TiO2 was employed as the photocatalyst and fluidized by compressed air. The catalyst and bubble distribution in the reactor was analysed using computational fluid dynamics (CFD) while the Monte Carlo (MC) method was used to model the light distribution and reaction kinetics. Finally, a lamp controller was designed to specify the required UV lamp output as a function of the solar intensity.
The CFD simulation using ANSYS CFX 17 showed that a fairly homogeneous distribution of the catalyst was achieved in the reactor. Consequently, accurate simulations of the light distribution could be achieved without considering the hydrodynamics. The MC models revealed that bubbles did not significantly influence light absorption at the optimum catalyst loading. This showed that air was a good medium for fluidization as it could provide good mixing and oxygen electron acceptor without negatively affecting light absorption. The forward scattering behaviour of the P25 TiO2 and the increase in light attenuation with catalyst loading was confirmed in this work. The optimum catalyst loading in the different reactor configurations was 0.15 g/L (tubular solar), 0.2 g/L (annular solar), 0.4 g/L (annular UV lamp), and 0.4 g/L (hybrid light). This resulted in experimental reaction rates of 0.337 mgL-1min-1 (tubular solar), 0.584 mgL-1min-1 (annular UV lamp), and 0.93 mgL-1min-1 (hybrid light).
An analysis of the local volumetric rate of energy absorption (LVREA) and reaction rate profiles along the radial coordinate showed a non-uniformity which worsened with an increase in catalyst loading. The reaction order with respect to the volumetric rate of energy absorption (VREA) indicated that solar illumination resulted in a higher electron-hole recombination as compared to UV illumination. This, combined with the higher intensity of the UV lamp, resulted in a higher reaction rate under UV light as compared to sunlight, demonstrating that the UV lamp could be used to supplement sunlight. For a typical sunny day, a lamp controller was designed that could adjust the UV lamp output as a function of the solar intensity to maintain the reaction rate at a reference level while ensuring less energy consumption than an ON/OFF lamp controller. This work demonstrated the feasibility of hybrid solar/UV lamp photocatalysis reactor which could maintain the advantages of solar photocatalysis while mitigating its drawbacks.
|
Page generated in 0.0467 seconds