• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sustainable photocatalytic oxidation processes for the treatment of emerging microcontaminants

Davididou, Konstantina January 2018 (has links)
This work investigates the elimination of new and emerging microcontaminants (EMs) from water by means of photochemical oxidation processes, namely heterogeneous and homogeneous photocatalysis. Representative compounds of artificial sweeteners (saccharin, SAC), endocrine disruptors (bisphenol-A, BPA), and pharmaceutica ls (antipyrine, AP) of high environmental persistence and widespread occurrence in the water cycle are used as case studies. Novel concepts that can make photochemica l oxidation a more cost-effective and environmentally benign technology are tested. In Chapter 4, the photocatalytic treatment of SAC and BPA is investigated. Novel submicronic anatase-rutile nanocomposite particles with tuned phase ratio are used as catalysts to increase the photocatalytic performance under UVA irradiation. At the best-assayed conditions (C0 = 3 mg/L, catalyst = 400 mg/L), SAC and BPA are completely degraded within 90 and 150 min of photocatalytic treatment, respectively. [variables: anatase-rutile ratio; initial substrate concentration; catalyst concentration; catalyst reuse; sonication during catalyst recovery] In Chapter 5, a UVA light-emitting diode (UVA-LED) and sunlight are used as irradiation sources to reduce energy requirements and environmental impacts of photocatalytic processes. The photocatalytic degradation of SAC and BPA is studied under UVA irradiation provided by either a UVA-LED or a conventional fluoresce nt blacklight UVA lamp (UVA-BL) and solar irradiation. At the best-assayed conditions (C0 = 2.5 mg/L, TiO2 = 250 mg/L), BPA is completely degraded within 20, 30, and 120 min under UVA-LED, solar, and UVA-BL irradiation, respectively. The treatment time required for the complete elimination of SAC is 20 min under UVA-LED and 90 min under UVA-BL irradiation. [variables: initial substrate concentration; catalyst concentration; water matrix; light source; reactor configuration] In Chapter 6, a comparative study is carried out among the photocatalytic systems of Chapters 4 and 5 in terms of EMs removal, photonic and energy efficiencies. Technica l and economic aspects of all the processes are assessed. LED-driven photocatalysis achieves the highest efficiency in terms of organic removal with the minimum energy consumption, rendering it the most sustainable technology for the treatment of EMs. In Chapter 7, olive mill wastewater (OMW) is used as an iron-chelating agent in the photo-Fenton reaction to obviate the need for water acidification at pH 2.8. Conventional, OMW- and EDDS-assisted photo-Fenton treatment is applied for SAC degradation in a solar compound parabolic collector (CPC). It was found that OMW forms iron complexes able to catalyse H2O2 decomposition and generate hydroxyl radicals. At the optimal OMW dilution (1:800), 90% of SAC is degraded within 75 min. [variables: pH; iron-chelating agent; initial SAC concentration; OMW dilution] In Chapter 8, other complexing and oxidising agents, namely oxalate and persulfate, are used for the intensification of AP degradation during UVA-LED photo-Fenton treatment. Neural networks are applied for process modelling and optimisation. At the optimal conditions (hydrogen peroxide = 100 mg/L, ferrous iron = 20 mg/L, oxalic acid = 100 mg/L), complete degradation of AP and 93% mineralisation is achieved within 2.5 and 60 min, respectively. [variables: initial concentration of hydrogen peroxide, ferrous iron, oxalic acid, persulfate] It is concluded that LED-driven photocatalysis is a sustainable technology for the elimination of EMs from water. Results from this work highlight the need for development and optimisation of engineering proper LED reactors. Furthermore, this work introduces a new concept towards the sustainable operation of photo-Fenton that is based on the use of wastewaters rich in polyphenols instead of pricey and hazardous chemicals for iron chelation. The addition of ferrioxalate complexes is proposed for the intensification of EMs mineralisation during UVA-LED photo-Fenton treatment. Finally, the findings of this work encourage the use of chemometric tools as predictive and optimisation tools.
2

Fast photochemical oxidation of proteins coupled to mass spectrometry reveals conformational states of apurinic/apyrimidic endonuclease 1

Hernandez Quiñones, Denisse Berenice 08 July 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fast photochemical oxidation of proteins (FPOP) is an emerging footprinting method that utilizes hydroxyl radicals. The use of hydroxyl radicals create stable labeled products that can be analyzed with mass spectrometry. The advantage of FPOP over other methods is the fast acquisition of results and the small amount of sample required for analysis. Protein structure and protein- ligand interactions have been studied with FPOP. Here we evaluated (1) the reproducibility of FPOP, (2) the effect of hydrogen peroxide concentration on oxidation and (3) the use of FPOP to evaluate protein- nucleic acid interaction with Apurinic/Apurinic endonuclease 1 (APE1) protein. APE1 is a pleotropic protein that has been crystallized and studied widely. The 35641.5 Da protein has two major functional activities: DNA repair and redox function. An intact protein study of APE1 showed consistent global labeling by FPOP and a correlation between oxidation and hydrogen peroxide concentration. Furthermore, analysis of APE1 with DNA was done in hopes of probing the DNA binding site. Although the oxidation observed was not sufficient to define the complex pocket, a dramatic effect was seen in residue oxidation when DNA was added. Interestingly, the internal residues were labeled collectively in all APE1 experiments which indicates partial unfolding of the protein as previously suggested in the literature. Hence, these findings establish the use of FPOP to capture protein dynamics and provide evidence of the existence breathing dynamics of APE1.
3

Modélisation de la formation des aérosols organiques secondaires dans les régions polluées

Ma, Prettiny 08 1900 (has links)
Les aérosols atmosphériques (par exemple les matières particulaires ou PM) sont une source majeure d’incertitude dans les modèles climatiques. Plusieurs études ont démontré que des concentrations élevées de PM réduisent l’espérance de vie. Les aérosols organiques secondaires (Secondary Organic Aerosols en anglais, SOA) sont formés dans l’atmosphère à partir des précurseurs gazeux à travers les réactions chimiques et les SOA représentent des composants majeurs de la masse des PM à l’échelle mondiale. Afin de mieux comprendre les processus chimiques responsables de la formation des SOA, un modèle en 0-D est élaboré pour simuler dynamiquement l’évolution des espèces organiques dans une parcelle d’air qui subit une oxydation photochimique produisant des SOA. Le modèle incorpore des paramètres récemment publiés pour la formation des SOA à partir des composés organiques volatiles (VOCs), ainsi que des composés organiques semi-volatiles et des composés organiques à volatilité intermédiaire (SVOCs et IVOCs). Le modèle est restreint par plusieurs mesures de précurseurs, incluant des mesures récemment développées qui fournissent des contraintes grandement améliorées sur les concentrations des précurseurs, et les prédictions sont comparées par rapport aux mesures des SOA prises au cours de la campagne CalNex. Lorsque les effets des pertes sur les parois des chambres à smog sont considérés pour les rendements des VOCs, la quantité et la vitesse de la formation des SOA dans le modèle sont plus en accord avec les observations. Les résultats de cette étude indiquent que les SVOCs et les IVOCs primaires sont responsables de la majorité (70 à 86 %) de la masse de SOA modélisée, accentuant leur grande contribution en tant que précurseurs des SOA. Cependant, la masse de SOA simulée est sous-estimée à des temps courts d’oxydation lorsque comparée aux données sur le terrain, mais à des temps plus longs, un accord modèle/mesures est observé. Cet écart peut être dû à un ΔIVOC/ΔCO ratio d’émission bas ou une sous-estimation basse des constantes d’oxydations des IVOCs, ce qui met en évidence la nécessité de poursuivre les études sur le terrain et dans les laboratoires de ces composés. / Atmospheric aerosols (i.e. particulate matter or PM) are a major source of uncertainty in climate models. Many studies have also shown that elevated concentrations of PM reduce life expectancies. Secondary organic aerosol (SOA) is formed in the atmosphere from gaseous precursors through chemical reactions and SOA represents a major component of PM mass globally. To better understand the chemical pathways responsible for SOA formation, a box model is designed to simulate dynamically the evolution of organic species in an air parcel as it undergoes photochemical oxidation producing SOA. The model incorporates recently published parameterizations for the formation of SOA from volatile organic compounds (VOCs), as well as from semi-volatile and intermediate-volatility organic compounds (SVOCs and IVOCs). The model is constrained by several measurements of precursors, including recently developed measurements that provide greatly improved constraints on precursor concentrations, and the predications are compared against measurements of SOA taken during the CalNex campaign. When accounting for the effect of chamber wall-losses on VOC yields, the amount and rate of SOA formation in the model is more consistent with observations. The results of this study also indicate that the primary SVOCs and IVOCs are responsible for a majority (70 – 86 %) of the model SOA mass, emphasizing their high contribution as SOA precursors. However, the SOA mass predicted is underestimated at shorter photochemical ages when compared to field measurements, but at longer ages, model/measurement agreement is observed. This bias may be due to low IVOC/CO emissions ratios or low estimated IVOC oxidation rate constants, which highlights the need for further field and laboratory studies of these compounds.
4

Comparison of different aluminium casting processes from an environmental perspective : Case study on plaster mould castings produced in Mid Sweden

Schaub, Henning January 2018 (has links)
While Aluminium has lots of unique properties and is seen as a material of the future, its production and manufacturing has significant environmental impacts. For complex and dimensional shapes casting remains the main manufacturing method and in this study the environmental pressure of different casting techniques is compared. A screening LCA is conducted to determine the environmental impacts of plaster mould castings in a case study at the Ventana Hackås AB foundry in Mid Sweden. The findings are compared to models of sand, pressure die and lost wax castings, based on literature datasets. The most relevant factors for the environmental performance are identified as the production of the aluminium alloy and the amount and source of energy. For plaster mould castings additionally the plaster consumption is significant, while lost wax castings are dominated by the mould production and general processes. Under similar circumstances a relatively similar performance was found for all casting techniques except the lost wax process, which is at least 3 times more emission intensive. Of the remaining techniques pressure die castings performed the best and plaster mould castings the worst, but different sources of uncertainties have been identified in this comparison. In addition a carbon footprint interface is created based on these findings, to enable specific comparisons of different casting method setups. Customizable variables allow the adaptation of three scenarios to real world conditions. As the main influencing factors the aluminium alloy, source of electricity and casting technique have been identified. / <p>2018-10-10</p>
5

Využití radikálového značení bílkovin pro strukturní biologii / Utilization of protein radical foootprinting for stuctural biology

Polák, Marek January 2020 (has links)
(In English) The reaction of highly reactive oxygen radicals with protein solvent-accessible residues can be utilized to map protein landscape. Fast photochemical oxidation of proteins (FPOP) is an MS- based technique, which utilizes highly reactive radical species to oxidize proteins and map protein surface or its interactions with their interaction partners. In this work, FPOP was employed to study protein-DNA interactions. First, a full-length of FOXO4-DBD was successfully expressed and purified. The ability of the protein to bind its DNA-response element was verified by electrophoretic and MS-based techniques, respectively. Optimal experimental conditions were achieved to oxidize the protein itself and in the presence of DNA, respectively. Oxidized samples were analyzed by bottom-up and top-down approach. In the bottom-up experiment, modification of individual residues was precisely located and quantified. Different extend of modification was observed for protein alone and in complex with DNA. To avoid experimental artifacts analyzing multiply oxidized protein, standard bottom up approach was replaced by a progressive top-down technology. Only a singly oxidized protein ion was isolated, and further fragmented by collision-induced dissociation (CID) and electron-capture dissociation (ECD),...

Page generated in 0.126 seconds