• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear photoemission imaging /

Jones, Michael D. January 1980 (has links)
Thesis (Ph. D.)--Oregon Graduate Center, 1980.
2

Applications of Photoemission Electron Microscopy to Melanin and Melanosomes

Peles, Dana Nicole January 2011 (has links)
<p>Melanin is a biological pigment that is ubiquitous in nature and generally produced within melanosomes, specialized organelles. Typically, melanin is categorized into two distinct classes, based on color and molecular precursor: eumelanin (brown-black) and pheomelanin (yellow-red). Whereas much is known regarding the molecular precursors to the two pigments, an understanding of their resulting molecular structure remains elusive. Despite this lack of knowledge, several functions are attributed to the pigments, including photoprotection and photosensitization. Epidemiological data for skin and ocular cancers have observed an increased incidence for increased relative concentrations of pheomelanin. Furthermore, eumelanin is generally identified as photoprotective and antioxidant, whereas pheomelanin is generally identified as photoreactive and pro-oxidant. This thesis describes the photophysical properties of the naturally-occuring melanin pigments and presents new insights into their roles within the context of skin and ocular cancers.</p><p> Photoemission electron microscopy provides a unique opportunity to probe the complex photoproperties of melanins contained within intact melanosomes isolated from tissues of bovine and human eyes. Photoionization threshold potentials characteristic of eumelanin and pheomelanin have been determined and are used to investigate the molecular architecture of the pigments within the melanosome. Furthermore, a novel approach to photoemission electron microscopy is used to obtain the first direct measurements of the absorption coefficients from intact melanosomes. </p><p> Human iridal stroma melanosomes are comprised of both eumelanin and pheomelanin in various ratios according to iris color; dark brown and blue-green iris melanosomes are characterized by a eumelanin:pheomelanin ratio of 14.8 and 1.3, respectively. Despite the significant difference in the overall pigment composition, a common eumelanin surface photoionization threshold is obtained for both melanosomes. This data indicates that within the melanosome, the phototoxic pheomelanin pigment is encased by eumelanin. This structure mitigates the adverse photochemical properties of pheomelanin. However, damage to the eumelanic exterior and or significant reduction in the amount of eumelanin present could compromise the protective ability of eumelanin, providing mechanisms for exposure of pheomelanin and consequently contributing to oxidative stress.</p><p> The absorption spectra of intact melanosomes of varying melanin compositions were determined over the spectral range from 244 to 310 nm. The absorption spectra of eumelanic melanosomes are similar regardless of monomer composition or embryonic origin. Furthermore, the absorption spectra of melanosomes containing a mixture of pigments were similar to those containing pure eumelanin, arguing that the absorption properties of the melanosome are maintained regardless of increased pheomelanin composition. Therefore, the correlation between epidemiological data and the eumelanin:pheomelanin ratio is not predicted to be a reflection of the melanosome's decreased ability to attenuate biologically relevant wavelengths, but instead is predicted to be a reflection of the different photoreactivities of the melanin pigments contained within.</p> / Dissertation
3

Emission polarisée de nanoémetteurs : excitation de plasmons sur une surface métallique / Polarized emission from nanoemitters : plasmonic excitation on a metallic surface

Lethiec, Clotilde 26 June 2014 (has links)
L'optimisation du couplage lumière-matière requiert la connaissance de l'orientation du dipôle émetteur associé à une source de photons, ainsi que de la distribution de champ électrique du mode excité. Afin de maximiser le couplage entre des émetteurs fluorescents et des nanostructures, nous avons établi une méthode qui permet de déterminer l'orientation d'un dipôle d'émission. Les calculs en champ électrique, associés à une analyse en polarisation, constituent une modélisation complète, pouvant être généralisée à diverses situations expérimentales. Nous appliquons ensuite la méthode proposée à des nanocristaux colloïdaux de CdSe/CdS et CdSe/ZnS sphériques, ainsi qu'à des nanobâtonnets de CdSe/CdS. Nous avons déterminé, par une analyse en polarisation, l'orientation complète d'un dipôle émetteur individuel. Nous avons ensuite étudié le couplage de la lumière à des plasmons grâce à des réseaux périodiques métalliques. Des mesures de réflectivité spéculaire ont mis en évidence un couplage efficace de la lumière incidente à des plasmons de surface sur une large gamme de longueurs d'onde. Des mesures de microscopie électronique par photoémission (PEEM), basées sur la collection d'électrons photoémis à la surface du métal, ont permis d'étudier le couplage de la lumière aux modes plasmons de surface, avec une haute résolution spatiale (25 nm). L'excitation de l'échantillon par un laser, dont on varie la longueur d'onde et la polarisation, fournit une cartographie de la distribution du champ à la surface. Les échantillons étudiés ont mis en évidence différentes signatures de couplage du faisceau incident aux modes plasmoniques (franges d'interférences, points chauds). / The emission features of a single emitter embedded in a nanostructure are closely related to the local environment parameters, as well as to the orientation of the dipole itself. In order to maximize the coupling of fluorescent emitters to nanostructures, we established a model to determine the 3D-orientation of an emitting dipole. I developed an analytic description of a method which allows a measurement of a single dipole orientation to be performed, in various experimental configurations. I then applied this method to colloidal semiconductor nanocrystals (spherical CdSe/CdS and CdSe/ZnS nanocrystals and CdSe/CdS dot-in-rods). By using a polarization analysis, I determined the 3D-orientation of a single emitting dipole. This study led us to the particular conclusion that the emitting dipole associated to a dot-in-rod is not aligned with the elongated axis of the dot-in-rod. In a second part, I studied the coupling between light to surface plasmons modes using periodic metallic gratings. Specular reflectivity measurements highlighted an efficient coupling between the incident visible light and surface plasmons polaritons for a large range of wavelengths. Photoemission electron microscopy (PEEM) measurements, based on the collection of photo-emitted electrons on the surface of the sample, allowed the coupling of light to plasmonic modes to be investigated with a high spatial resolution (25 nm). The sample is excited by a laser tunable in polarization and wavelength, providing a map of the electric field on the surface. The samples showed two different signatures of a coupling to plasmonic modes (interference fringes and hot spots).
4

Electronic and photocatalytic properties of transition metal decorated molybdenum disulfide

Shi, X. (Xinying) 30 August 2018 (has links)
Abstract This thesis is dedicated to realizations and physical understanding of electronic and photocatalytic properties after decorating transition metals to the semiconducting molybdenum disulfide. Synthesized via facile wet chemical methods, the MoS₂-Au, MoS₂-Au-Ni and MoS₂-Ag-Ni composites were formed as binary or ternary compounds. The Au nanoparticles are stably joined to the MoS₂ matrix without deteriorating layered structures of the host. After introducing the Au nanoglue as a common buffer, a metallic contact is reached between Ni and MoS₂, and attributed to new electron migration channel via MoS₂ edge contact. Adapting the Ag as the buffer element can attach the Ni to the basal plane of the MoS₂ beside edge contact. The Ni-Ag-MoS₂ composite effectively splits water under visible light irradiation and produce hydrogen. The excellent photocatalytic activity is attributed to effective charge migration through dangling bonds at the MoS2-Ag-Ni alloy interface and the activation of MoS₂ basal planes. / Original papers The original publications are not included in the electronic version of the dissertation. W. Cao, V. Pankratov, M. Huttula, X. Shi, S. Saukko, Z. Huang, M. Zhang. Gold nanoparticles on MoS2 layered crystal flakes. Materials Chemistry and Physics, 158, 89−95 (2015). DOI: 10.1016/j.matchemphys.2015.03.041 X. Shi, S. Posysaev, M. Huttula, V. Pankratov, J. Hoszowska, J.-Cl. Dousse, F. Zeeshan, Y. Niu, A. Zakharov, T. Li, O. Miroshnichenko, M. Zhang, X. Wang, Z. Huang, S. Saukko, D. L. González, S. van Dijken, M. Alatalo, W. Cao. Metallic contact between MoS₂ and Ni via Au nanoglue. Small, 14, 1704526 (2018). DOI: 10.1002/smll.201704526 http://jultika.oulu.fi/Record/nbnfi-fe2018060525279 X. Shi, M. Huttula, V. Pankratov, J. Hoszowska, J.-Cl. Dousse, F. Zeeshan, Y. Niu, A. Zakharov, Z. Huang, G. Wang, S. Posysaev, O. Miroshnichenko, M. Alatalo, W. Cao. Quantification of bonded Ni atoms for Ni-MoS₂ metallic contact through X-ray photoemission electron microscopy. Microscopy and Microanalysis, 24, 458−459 (2018). DOI: 10.1017/S1431927618014526 http://jultika.oulu.fi/Record/nbnfi-fe2018082834233 X. Shi, M. Zhang, W. Cao, X. Wang, M. Huttula. Efficient photocatalytic hydrogen evolution via activated multilayer MoS₂. Manuscript. X. Shi, Z. Huang, M. Huttula, T. Li, S. Li, X. Wang, Y. Luo, M. Zhang, W. Cao. Introducing magnetism into 2D nonmagnetic inorganic layered crystals: a brief review from first-principles aspects. Crystals, 8, 24 (2018). DOI: 10.3390/cryst8010024 http://jultika.oulu.fi/Record/nbnfi-fe201802153441
5

Domains and functionality in multiferroic BiFeO3 films

Waterfield Price, Noah January 2017 (has links)
For over half a century, the technological promise of spins manipulable by a small voltage has captivated the interest of experimental and theoretical researchers alike. However, if thin-film multiferroics are to be incorporated into future data storage devices, a much greater understanding of their behaviour and how they differ from their bulk counterparts is required. In this thesis, we probe the fundamental multiferroic properties of BiFeO<sub>3</sub> films through a combination of state-of-the-art diffraction and microscopy techniques. We investigate the coupling between magnetic, ferroelectric, and structural order, with a focus on domains, and how the domain structure may be manipulated in order to tailor the multiferroic properties of the material. Using non-resonant magnetic x-ray scattering (NXMS) and neutron diffraction, we study the magnetic and structural properties of (111)<sub>pc</sub>-oriented BiFeO<sub>3</sub> films. Contrary to the general belief that to they grow as a rhombohedral monodomain, we find that they comprise a sub-micron texture of monoclinic domains. The magnetic structure is found to be intimately coupled to the structure, resulting in the propagation vector being locked to the monoclinic b-axis. This magnetoelastic coupling opens up a route to strain-engineer the magnetic domains via epitaxial strain. By growing BiFeO<sub>3</sub> films on a lower-symmetry, TbScO<sub>3</sub> substrate, we are able to engineer a magnetic, structural and ferroelectric monodomain, coherent over the entire film, constituting an increase in the domain size by over five orders of magnitude. We directly demonstrate the coupling between ferroelectric and magnetic order parameters of the cycloidal magnetic structure. Using NXMS polarimetry to measure directly the magnetic polarity, we show that upon switching the ferroelectric polarisation, the magnetic polarity switches accordingly---a major rearrangement of the magnetic structure, with each spin rotating by 90 degrees on average. This goes counter to idea that magnetic and ferroelectric order parameters are only weakly coupled in type-I multiferroics. Finally, using photoemission electron microscopy we are able to directly image the sub-micron magnetostructural domain structure. We further show that there is a strong interfacial coupling between the magnetostructural domains of BiFeO<sub>3</sub> with a ferromagnetic overlayer. The BiFeO<sub>3</sub> domains are found to impose a uniaxial anisotropy in the overlayer, opening up a route to control ferromagnetic domains.

Page generated in 0.1149 seconds