• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 25
  • 24
  • 21
  • 12
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 278
  • 54
  • 53
  • 49
  • 46
  • 42
  • 34
  • 25
  • 25
  • 25
  • 23
  • 21
  • 21
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Estrelas Be: fotosferas, envelopes e evolução na sequência principal / Be Stars: Photospheres, Circumstellar Environments and Evolution in the Main Sequence

Ronaldo Savarino Levenhagen 20 October 2004 (has links)
As estrelas Be compreendem uma grande faixa de massas e temperaturas. Por definição, são objetos de tipo B com classe de luminosidade entre V e III que apresentam, ou apresentaram alguma vez, linhas de Balmer em emissão (eventualmente metais uma vez ionizados) e/ou linhas com padrões de absorção shell, possivelmente formadas em um envelope circunstelar. Embora se saiba há muito tempo que esses objetos são rodadores rápidos e que giram pelo menos 1,5 a 2 vezes mais rápido do que as estrelas B normais, ainda é incerto se esses objetos são ou não em média rodadores crticos, não obstante as recentes observações interferométricas de HD 10144 (Achernar) (uma estrela Be tpica) indicarem se tratar de um rodador crtico. Devido às suas altas taxas de rotação, as quais originam distorções geométricas e distribuições não uniformes de temperatura dependentes da latitude estelar, os valores de velocidade de rotação derivados por métodos clássicos são sistematicamente subestimados. Além disso, os efeitos da rotação, aliados à presença do envelope circunstelar, mascaram as condições fsicas desses objetos, resultando em diferenças significativas em seus estágios evolutivos na seqüência principal. Neste trabalho apresentamos os resultados do estudo espectroscópico de estrelas Be em duas vertentes. Na primeira tratamos o tema da formação e estrutura do envelope circunstelar de estrelas Be, através das análises de duas estrelas, HD 127972 ( Cen) e HD 10144 (Achernar). Nesse estudo identificamos e caracterizamos seus modos de pulsação, os quais se constituem em um possvel mecanismo de perda de massa e formação do envelope. Além disso, estudamos a estrutura de seus envelopes circunstelares através da modelagem de perfis de Balmer em emissão. Na segunda vertente quantificamos as condições fsicas de 141 estrelas de campo, onde 114 são de tipo Be e 27 estrelas são B normais. Nesse estudo, comparamos os estágios evolutivos desses objetos obtidos através de métodos clássicos com os estágios evolutivos corrigidos dos efeitos da rotação elevada. Concluimos que o \"fenômeno Be\" pode ocorrer em todas as fases da evolução estelar na seqüência principal. / Be stars encompass a large mass and temperature range. By definition, they are B-type objects with luminosity classes V to III that have, or have shown at least once, Balmer lines in emission (eventually single-ionized metals) and/or lines with shell absorption patterns possibly formed in a circumstellar envelope. Though it has long been known that these objects are fast rotators and that they rotate at least 1.5 to 2 times faster than normal B stars, it is still uncertain whether or not these objects are in average critical rotators, although recent interferometric observations on Achernar (a typical Be star) pointed it out to be a critical rotator. Due to their high rotation rates which originate geometrical distortions and non-uniform temperature distributions dependent on the stellar latitude, the rotation velocity values derived from classical methods are systematically underestimated. Moreover, the rotation effects allied to the continuum emission due to the presence of a circumstellar envelope disguise the physical conditions of these objects, resulting in significative differences of their main-sequence evolutionary stages. In this work we present the results of the spectroscopic study of Be stars in two approaches. In the first one we treat the subject of formation and structure of the circumstellar envelope of Be stars through the analyses of two stars, HD 127972 ( Cen) and HD 10144 (Achernar). In this study we identify and characterize their pulsation modes, which constitute in a possible mechanism of mass loss and envelope formation. Moreover we study the structure of their circumstellar envelopes through the modeling of Balmer profiles in emission. In the second approach we quantify the physical conditions of 141 field stars, where 114 are Be-type stars and 27 stars are normal B stars. In this study, we compared the evolutionary stages of these objects obtained through classical methods with evolutionary stages corrected for high rotation effects. We conclude that the \"Be phenomenon\" can occur at whatever stage of the stellar evolution on the main sequence.
162

Measurement of the Dark Energy Equation of State Using the Full SNLS Supernova Sample / Mesure de l'équation d'état de l'énergie noire à l'aide de l'échantillon complet de supernovae SNLS

El Hage, Patrick 26 September 2014 (has links)
L’un des plus grands défis de la cosmologie moderne est d’expliquer l’accélération de l’expansion de l’univers dans son histoire récente. La découverte de cette accélération s’est faite grâce à des mesures de supernovae, ces dernières restant les sondes les plus puissantes pour charactériser cette accélération. Cette thèse vise à présenter l’analyse finale du Supernova Legacy Survey (SNLS) qui sera publiée en 2015. Nous commençons par présenter les fondements théoriques de la cosmologie moderne, en nous focalisant en particulier sur les défis théoriques que présente cette accélération. Nous introduisont ensuite les supernovae de type Ia (SNIa) et justifions leur usage en tant que sonde cosmologique. Par la suite, nous donnons un aperçu global de l’expérience SNLS. Nous abordons alors les aspects techniques de l’analyse. Nous commençons par l’exploration du processus de photométrie, utilisé pour la mesure des supernovae. Nous détaillons alors la nouvelle méthode de photométrie implémentée par SNLS qui évite le rééchantillonnage des images. Nous explorons aussi les simulations mise en œuvre dans le but de garantir la linéarité de la méthode au dessous de 1 pour mille. Nous explorons ensuite la procédure de calibration associée à ces mesures utilisant des étoiles de champ dont la précision de calibration atteint les 3.5 pour mille. Enfin, nous terminons avec une description détaillée de la mise en oeuvre de tous les outils présentés, afin d’extraire des paramètres cosmologiques des données. Afin d’estimer la capacité de SNLS à contraindre les paramètres cosmologiques, nous contruisons un diagramme de Hubble grâce à une analyse préliminaire des données incluant 960 supernovae, dont 450 provenant du SNLS. La combinaison de ce diagramme de Hubble avec des contraintes apportées d’autres sondes cosmologiques mène à une incertitude sur le paramètre de l’équation d’état de l’énergie noire de 0.048, la mesure la plus précise jusqu’à nos jours. / A significant open question of modern cosmology is explaining the accelerated expansion of the universe in late times. The discovery of this acceleration was made using supernova measurements, which continue to be the most significant probe with which to characterize this acceleration. This thesis concerns itself with presenting the final analysis of the Supernova Legacy Survey (SNLS) which will be published in 2015. We begin by presenting the theoretical foundations of modern cosmology, with special emphasis on the challenges presented by acceleration. We then introduce type Ia supernovae (SNIa) and motivate their use as probes of cosmic expansion. Afterwards, we give an overview of the SNLS experiment. We then move on to the technical aspects of the analysis that was carried out. We start by exploring the process of photometry, with which supernova measurements are made. Here we look at the newly implemented photometry method that avoids resampling images. We also explore simulations aimed at ensuring the method’s linearity up to less than 1 per mille. We then explain the calibration process associated with these measurements using field stars calibrated up to the 3.5 per mille level. Finally, we end with an in depth look at the cosmology analysis itself, which utilizes all the tools we have explored to extract cosmological parameters from the data. To estimate the constraining power of the SNLS experiment, we undertake a preliminary analysis of the data by constructing a Hubble diagram using 960 supernovae, of which 450 come from the SNLS. Combining this Hubble diagram with constraints from other cosmological probes leads to an uncertainty on the equation of state parameter of dark energy of 0.048, its most preciseconstraint to date.
163

The evaluation of bulbar redness grading scales

Schulze, Marc-Matthias January 2010 (has links)
The use of grading scales is common in clinical practice and research settings. A number of grading scales are available to the practitioner, however, despite their frequent use, they are only poorly understood and may be criticised for a number of things such as the variability of the assessments or the inequality of scale steps within or between scales. Hence, the global aim of this thesis was to study the McMonnies/Chapman-Davies (MC-D), Institute for Eye Research (IER), Efron, and validated bulbar redness (VBR) grading scales in order to (1) get a better understanding and (2) attempt a cross-calibration of the scales. After verifying the accuracy and precision of the objective and subjective techniques to be used (chapter 3), a series of experiments was conducted. The specific aims of this thesis were as follows: • Chapter 4: To use physical attributes of redness to determine the accuracy of the four bulbar redness grading scales. • Chapter 5: To use psychophysical scaling to estimate the perceived redness of the four bulbar redness grading scales. • Chapter 6: To investigate the effect of using reference anchors when scaling the grading scale images, and to convert grades between scales. • Chapter 7: To grade bulbar redness using cross-calibrated versions of the MC-D, IER, Efron, and VBR grading scales. Methods: • Chapter 4: Two image processing metrics, fractal dimension (D) and % pixel coverage (% PC), as well as photometric chromaticity (u’) were selected as physical measures to describe and compare redness in the four bulbar redness grading scales. Pearson correlation coefficients were calculated between each set of image metrics and the reference image grades to determine the accuracy of the scales. • Chapter 5: Ten naïve observers were asked to arrange printed copies of modified versions of the reference images (showing vascular detail only) across a distance of 1.5m for which only start and end point were indicated by 0 and 100, respectively (non-anchored scaling). After completion of scaling, the position of each image was hypothesised to reflect its perceived bulbar redness. The averaged perceived redness (across observers) for each image was used for comparison to the physical attributes of redness as determined in chapter 4. • Chapter 6: The experimental setup from chapter 5 was modified by providing the reference images of the VBR scale as additional, unlabelled anchors for psychophysical scaling (anchored scaling). Averaged perceived redness from anchored scaling was compared to non-anchored scaling, and perceived redness from anchored scaling was used to cross-calibrate grades between scales. • Chapter 7: The modified reference images of each grading scale were positioned within the 0 to 100 range according to their averaged perceived redness from anchored scaling, one scale at a time. The same 10 observers who had participated in the scaling experiments were asked to represent perceived bulbar redness of 16 sample images by placing them, one at a time, relative to the reference images of each scale. Perceived redness was taken as the measured position of the placed image from 0 and was averaged across observers. Results: • Chapter 4: Correlations were high between reference image grades and all sets of objective metrics (all Pearson’s r’s≥0.88, p≤0.05); each physical attribute pointed to a different scale as being most accurate. Independent of the physical attribute used, there were wide discrepancies between scale grades, with sometimes little overlap of equivalent levels when comparing the scales. • Chapter 5: The perceived redness of the reference images within each scale was ordered as expected, but not all consecutive within-scale levels were rated as having different redness. Perceived redness of the reference images varied between scales, with different ranges of severity being covered by the images. The perceived redness was strongly associated with the physical attributes of the reference images. • Chapter 6: There were differences in perceived redness range and when comparing reference levels between scales. Anchored scaling resulted in an apparent shift to lower perceived redness for all but one reference image compared to non-anchored scaling, with the rank order of the 20 images for both procedures remaining fairly constant (Spearman’s ρ=0.99). • Chapter 7: Overall, perceived redness depended on the sample image and the reference scale used (RM ANOVA; p=0.0008); 6 of the 16 images had a perceived redness that was significantly different between at least two of the scales. Between-scale correlation coefficients of concordance (CCC) ranged from 0.93 (IER vs. Efron) to 0.98 (VBR vs. Efron). Between-scale coefficients of repeatability (COR) ranged from 5 units (IER vs. VBR) to 8 units (IER vs. Efron) for the 0 to 100 range. Conclusions: • Chapter 4: Despite the generally strong linear associations between the physical characteristics of reference images in each scale, the scales themselves are not inherently accurate and are too different to allow for cross-calibration based on physical redness attributes. • Chapter 5: Subjective estimates of redness are based on a combination of chromaticity and vessel-based components. Psychophysical scaling of perceived redness lends itself to being used to cross calibrate the four clinical scales. • Chapter 6: The re-scaling of the reference images with anchored scaling suggests that redness was assessed based on within-scale characteristics and not using absolute redness scores, a mechanism that may be referred to as clinical scale constancy. The perceived redness data allow practitioners to modify the grades of the scale they commonly use so that comparisons of grading estimates between calibrated scales may be made. • Chapter 7: The use of the newly calibrated reference grades showed close agreement between grading estimates of all scales. The between-scale variability was similar to the variability typically observed when a single scale is repeatedly used. Perceived redness appears to be dependent upon the dynamic range of the reference images of the scale. In conclusion, this research showed that there are physical and perceptual differences between the reference images of all scales. A cross-calibration of the scales based on the perceived redness of the reference images provides practitioners with an opportunity to compare grades across scales, which is of particular value in research settings or if the same patient is seen by multiple practitioners who are familiar with using different scales.
164

The evaluation of bulbar redness grading scales

Schulze, Marc-Matthias January 2010 (has links)
The use of grading scales is common in clinical practice and research settings. A number of grading scales are available to the practitioner, however, despite their frequent use, they are only poorly understood and may be criticised for a number of things such as the variability of the assessments or the inequality of scale steps within or between scales. Hence, the global aim of this thesis was to study the McMonnies/Chapman-Davies (MC-D), Institute for Eye Research (IER), Efron, and validated bulbar redness (VBR) grading scales in order to (1) get a better understanding and (2) attempt a cross-calibration of the scales. After verifying the accuracy and precision of the objective and subjective techniques to be used (chapter 3), a series of experiments was conducted. The specific aims of this thesis were as follows: • Chapter 4: To use physical attributes of redness to determine the accuracy of the four bulbar redness grading scales. • Chapter 5: To use psychophysical scaling to estimate the perceived redness of the four bulbar redness grading scales. • Chapter 6: To investigate the effect of using reference anchors when scaling the grading scale images, and to convert grades between scales. • Chapter 7: To grade bulbar redness using cross-calibrated versions of the MC-D, IER, Efron, and VBR grading scales. Methods: • Chapter 4: Two image processing metrics, fractal dimension (D) and % pixel coverage (% PC), as well as photometric chromaticity (u’) were selected as physical measures to describe and compare redness in the four bulbar redness grading scales. Pearson correlation coefficients were calculated between each set of image metrics and the reference image grades to determine the accuracy of the scales. • Chapter 5: Ten naïve observers were asked to arrange printed copies of modified versions of the reference images (showing vascular detail only) across a distance of 1.5m for which only start and end point were indicated by 0 and 100, respectively (non-anchored scaling). After completion of scaling, the position of each image was hypothesised to reflect its perceived bulbar redness. The averaged perceived redness (across observers) for each image was used for comparison to the physical attributes of redness as determined in chapter 4. • Chapter 6: The experimental setup from chapter 5 was modified by providing the reference images of the VBR scale as additional, unlabelled anchors for psychophysical scaling (anchored scaling). Averaged perceived redness from anchored scaling was compared to non-anchored scaling, and perceived redness from anchored scaling was used to cross-calibrate grades between scales. • Chapter 7: The modified reference images of each grading scale were positioned within the 0 to 100 range according to their averaged perceived redness from anchored scaling, one scale at a time. The same 10 observers who had participated in the scaling experiments were asked to represent perceived bulbar redness of 16 sample images by placing them, one at a time, relative to the reference images of each scale. Perceived redness was taken as the measured position of the placed image from 0 and was averaged across observers. Results: • Chapter 4: Correlations were high between reference image grades and all sets of objective metrics (all Pearson’s r’s≥0.88, p≤0.05); each physical attribute pointed to a different scale as being most accurate. Independent of the physical attribute used, there were wide discrepancies between scale grades, with sometimes little overlap of equivalent levels when comparing the scales. • Chapter 5: The perceived redness of the reference images within each scale was ordered as expected, but not all consecutive within-scale levels were rated as having different redness. Perceived redness of the reference images varied between scales, with different ranges of severity being covered by the images. The perceived redness was strongly associated with the physical attributes of the reference images. • Chapter 6: There were differences in perceived redness range and when comparing reference levels between scales. Anchored scaling resulted in an apparent shift to lower perceived redness for all but one reference image compared to non-anchored scaling, with the rank order of the 20 images for both procedures remaining fairly constant (Spearman’s ρ=0.99). • Chapter 7: Overall, perceived redness depended on the sample image and the reference scale used (RM ANOVA; p=0.0008); 6 of the 16 images had a perceived redness that was significantly different between at least two of the scales. Between-scale correlation coefficients of concordance (CCC) ranged from 0.93 (IER vs. Efron) to 0.98 (VBR vs. Efron). Between-scale coefficients of repeatability (COR) ranged from 5 units (IER vs. VBR) to 8 units (IER vs. Efron) for the 0 to 100 range. Conclusions: • Chapter 4: Despite the generally strong linear associations between the physical characteristics of reference images in each scale, the scales themselves are not inherently accurate and are too different to allow for cross-calibration based on physical redness attributes. • Chapter 5: Subjective estimates of redness are based on a combination of chromaticity and vessel-based components. Psychophysical scaling of perceived redness lends itself to being used to cross calibrate the four clinical scales. • Chapter 6: The re-scaling of the reference images with anchored scaling suggests that redness was assessed based on within-scale characteristics and not using absolute redness scores, a mechanism that may be referred to as clinical scale constancy. The perceived redness data allow practitioners to modify the grades of the scale they commonly use so that comparisons of grading estimates between calibrated scales may be made. • Chapter 7: The use of the newly calibrated reference grades showed close agreement between grading estimates of all scales. The between-scale variability was similar to the variability typically observed when a single scale is repeatedly used. Perceived redness appears to be dependent upon the dynamic range of the reference images of the scale. In conclusion, this research showed that there are physical and perceptual differences between the reference images of all scales. A cross-calibration of the scales based on the perceived redness of the reference images provides practitioners with an opportunity to compare grades across scales, which is of particular value in research settings or if the same patient is seen by multiple practitioners who are familiar with using different scales.
165

Tarpžvaigždinės ekstinkcijos tyrimas Slibino-Cefėjaus žvaigždynų ribos kryptimi / Investigation interstellar extinction in Cepheus Flare

Maskoliūnas, Marius 24 September 2008 (has links)
Paukščių Tako Galaktikos sritį esančią Cefėjaus žvaigždyne sudaro keletas žvaigždėdaros regionų. Šiame darbe tirta sritis kurios centro koordinatės l=102.4 , b=+15.5 ir stebimo lauko dydis 1.2*1.2 laipsnio. Tyrimui naudota Vilniaus fotometrinė sistema su CCD kamera. / The Milky Way region in the direction of the Cepheus contains several star forming regions. The area of 1.2*1.2 deg size at l=102.4 , b=+15.5 are investigated using CCD photometry in the Vilnius system and described in this work.
166

Unveiling the nature of blue compact galaxies

Micheva, Genoveva January 2012 (has links)
Blue compact galaxies (BCGs) are gas-rich star-forming low redshift galaxies with low metallicities. In some cases the relative strength of the starburst can be so high that it completely dominates the light output of the galaxy, an obstacle which has been countered by deeper optical imaging data and observations in the near infra-red (NIR) regime. This has revealed an older population referred to as the "host". In an effort to study the hosts of BCGs we have analyzed new and extremely deep UBVRIHKs imaging data for 46 high and low luminosity BCGs. For several BCGs the data reveal previously undetected extended low surface brightness components beyond the μB~26 mag arcsec-2 isophote. These are predominantly the luminous BCGs in the sample, and they show tails, plumes, optical bridges between companion galaxies, and other signs of merging or strong tidal interactions. The low luminosity BCGs, on the other hand, are well represented by an exponential disk profile down to the reliability limit of the data at a surface brightness level of μB~28 mag arcsec-2. The burst and host populations are examined separately. The integrated colors of both are compared to predictions from spectral evolutionary models, giving an indication of their respective ages and metallicities. Our analysis suggests that for the luminous BCGs a strong contribution by nebular emission is present almost down to the Holmberg radius, invalidating the host structural parameters obtained from brighter isophotes. Possible evolutionary links to quiescent galaxies like dEs, dIs, and LSBGs are explored by examining the structural parameters derived from two radial ranges typically assumed to be dominated by the underlying host galaxy. In this parameter space the luminous BCGs in our sample deviate from their low luminosity counterparts and from BCG data in the literature. They are instead consistent with the structural properties of giant low surface brightness galaxies with central surface brightnesses μB≥23 mag arcsec-2. We further examine the asymmetry and concentration parameters for the sample and study the correlation between the minimum asymmetry distribution in the optical and NIR vs morphological class, concentration and integrated colors to identify mergers/tidally interacting galaxies. A shift in the asymmetry distribution occurs for low luminosity BCGs from the optical to the NIR. In contrast, we find that the flocculent asymmetry component (due to star formation) completely dominates the composite asymmetry of high luminosity BCGs. We introduce an alternative asymmetry measure which successfully traces the dynamical asymmetry component (due to merging/tidal interaction) of the host. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.</p>
167

Spectral characterization of the Herschel SPIRE photometer

Spencer, Locke Dean, University of Lethbridge. Faculty of Arts and Science January 2005 (has links)
The European Space Agency's Herschel Space Observatory is comprised of three cryogenically cooled instruments commissioned to explore the far infrared/submillimetre universe. The Spectral and Photometric Imaging REceiver (SPIRE) is one of Herschel's instruments and consists of a three band imaging photometer and a two band imaging spectrometer. Canada is involved in the SPIRE project through provision of instrument development hardware and software, mission flight software, and support personnel. This thesis discusses Fourier transform spectroscopy (FTS) and FTS data processing. A detailed discussion is included on FTS phase correction, with results presented from the optimization of an enhanced Forman phase correction routine developed for this work. This thesis discusses the design, verification, and use of the hardware and software provided by Dr. Naylor's group as it relates to SPIRE verification testing. Results of the photometer characterization are presented. The current status of SPIRE and its future schedule is also discussed. / xvii, 239 leaves : ill. (some col.) ; 28 cm.
168

Galactic star clusters in the u'g'r'i'z' photometric system

Clem, James Lewis 16 December 2009 (has links)
Although the Sloan Digital Sky Survey (SDSS) has compiled an unprecedented amount of photometric data on stellar populations in the Milky Way, it is not presently possible to accurately and consistently interpret these data due to the lack of precise fiducial stellar sequences and color-temperature relations for the new 'u'g'r'i'z' photo-metric system. In order to address these deficiencies, this study describes an extensive observational project that has obtained high-quality and homogeneous photometry for a number of different Galactic star clusters spanning a wide range in meta.llicity (-2.5 ≤ [Fe/H] ≤ +0.3), as observed in the u'g'r'i'z' passbands with the MegaCam wide-field imager on the Canada-France-Hawaii Telescope. By employing these purest of stellar populations, fiducial sequences have been defined from color-magnitude diagrams (CMDs) that. extend from the tip of the RGB down to approximately 4 magnitudes below the turnoff points: these have been accurately calibrated to the standard u'g'r'i'z` system via a set of secondary photometric standards located within these same clusters. Consequently, they can serve as a valuable set of empirical fiducials for the interpretation of stellar populations data in the system, as well as calibrators for the transformation of stellar isochrones to the u'g'r'i'z' bandpasses. In fact. when a new grid of theoretical color-Teff relations and bolometric corrections for the system is computed from Kurucz model atmospheres and employed to translate isochrones to the observed planes, generally very good and consistent fits to the CMDs of the metal-poor ([Fe/H] <0.0) globular clusters M 92, M 13, and M 71 are found, once reasonable estimates of the cluster parameters are assumed (the only obvious discrepancy is a shift of ~ 0.01 - 0.03 mag between the predicted and observed giant branches when the models are fitted to the main sequences). More-over, the same isochrone fits are entirely consistent with those inferred from cluster observations in other photometric systems - notably, the BV(RI) , and uvby systems. At the metal-rich end ([Fe/H] ≥ 0.0), however. these transformations fail to match the observed loci of cool, main-sequence stars (Teff ≤ 5000K) in the open clusters M 67 and NGC 6791. An exploration into possible causes of these discrepancies is provided.
169

Modely planatek z řídké fotometrie / Asteroid Models from Sparse Photometry

Hanuš, Josef January 2013 (has links)
We investigate the photometric accuracy of the sparse data from astrometric surveys available on AstDyS. We use data from seven surveys with the best accu- racy in combination with relative lightcurves in the lightcurve inversion method to derive ∼300 new asteroid physical models (i.e., convex shapes and rotational states). We introduce several reliability tests that we use on all new asteroid mod- els. We investigate rotational properties of our MBAs sample (∼450 models here or previously derived by the lightcurve inversion), especially the spin vector dis- tribution. It is clear that smaller asteroids (D 30 km) have strongly anisotropic spin vector distribution even when we remove the bias of the lightcurve inversion, the poles are clustered towards ecliptic poles. We explain this anisotropy as a re- sult of non-gravitational torques (YORP effect) acting on these objects, because without accounting these torques, we were not able to create such anisotropic dis- tribution by our model of the spin evolution. We also estimate sizes for 41 and 10 asteroids by scaling their models to fit the adaptive optics profiles and occultation observations, respectively.
170

Simulation of Solar System Objects for the NISP instrument of the ESA Euclid Mission

KANSAL, Vanshika January 2018 (has links)
Euclid is a medium class mission designed to study the geometry of dark universe. It will work in the visible and near infrared imaging &amp; spectroscopy for a lifetime of 6 years down to the magnitude of mAB = 24.5 with Visible Imager Instrument (VIS) and mAB = 24 with Near Infrared Spectrometer and Photometer instrument in Y, J &amp; H broadband filters. The current survey design will avoid ecliptic latitudes below 15 degrees, but the observation pattern in repeated sequences of four blocks with four broad-band filter seems well-adapted to Solar System object detection. The aim of this thesis is to simulate the Solar System Objects (SSOs) for Near Infrared Spectrometer and Photometer (NISP) instrument and measure the flux/magnitude &amp; position of these moving objects. The simulation of Solar System Objects is implemented in with simulator Imagem using the sky position, velocity, direction of movement and magnitude with respect to band of the objects. The length of the trail is determined using exposure time and after that the sky position is evolved for each band filter. The output images showed the trail of objects which is 2 to 10 pixels long in case of Near Infrared Spectrometer and Photometer instrument. To find out the flux distribution in the trail, the differential photometry is performed. The variation in magnitude was observed at least of 1% to 3% of the magnitude which may also implies that variation in brightness of objects can be observed with the velocity. To detect the moving objects, differential astrometry is also performed, which provides the catalogue with the information of position and proper motion of the objects as well as an image is also generated which showed the detected and undetected objects from all bands in one image.

Page generated in 0.0308 seconds