• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Band-Structure Analysis of Liquid-Crystal Photonic Crystal Fibers

Kao, Chia-Lung 23 July 2009 (has links)
Filling the liquid crystals (LCs) into the air holes of the photonic crystal fibers (PCFs), we can obtain the liquid-crystal photonic crystal fibers (LCPCFs). Due to the tunable optical properties of the LCs, we can fabricate tunable optical devices based on the LCPCFs. In this thesis, we investigate the photonic bandgap (PBG) properties and find out the effective modal index curves of the LCPCFs by the finite-difference frequency-domain (FDFD) method. The effects of the operation temperature and the alignment of the LCs are discussed. When the alignment of the LC is in the transverse plane of the PCF, we can observe the blue shift and the splitting of the PBGs as we increase the operation temperature. As the LC is aligned along the PCF, the red shift occurs and the splitting disappears. The shift and the splitting of the PBGs are due to the high anisotropic property of the LCs. Besides, we can rotate the alignment of the LCs by the external electric field, and the effects of the alignment on the propagation properties of the LCPCFs are larger than those of the operation temperature. In the experiment, we successfully fabricate the LCPCFs by using the vacuum method. In the measurement of the LCPCF at different operation temperatures,the red shift of the spectra can be observed with the increasing operation temperatures, which has a very good agreement with the simulation results. As we vary the alignment of the LCs with the external electric field, the transmission bands are almost the same as the voltage is less than 200V. During the range of 200V to 400V, the PBGs demonstrate obvious variations and the deep appears at 1050nm. When the external electric field is raised to 400V, the shapes of the spectra are almost the same and the red shift of the PBGs can be observed. The results of our simulation and the experiment measurement can help us to design and fabricate optical devices based on the LCPCFs.
2

Monitoring Defect Formation in Colloidal Self Assembly using Photonic Bandgap Variations

Koh, Yaw Koon, Wong, Chee Cheong 01 1900 (has links)
Defect control in colloidal crystals is essential for these nanostructures to be effective as photonic bandgap (PBG) materials. We have used in-situ monitoring of the PBG of a colloidal crystal to study the structural changes during colloidal self assembly, with a focus on the formation of macroscopic defects such as cracks. These findings allow us to model the final stages of colloidal self assembly and explain the formation of growth defects in colloidal crystal. Our model suggests that cracks are intrinsic to self assembly growth methods. . However, by tuning the interaction potential between the colloids, it is possible to minimize the cracks in colloidal crystals. / Singapore-MIT Alliance (SMA)
3

Dynamically Tunable Photonic Bandgap Materials

Schaub, Dominic Etienne 13 October 2010 (has links)
Photonic bandgap materials are periodic structures that exclude electromagnetic field propagation over frequency intervals known as bandgaps. These materials exhibit remarkable wave dispersion and have found use in many applications that require control over dynamic electromagnetic fields, as their properties can be tailored by design. The two principal objectives of this thesis are the development of a liquid crystal-based microwave photonic bandgap device whose bandgap could be tuned during operation and the design and implementation of a spectral transmission-line modeling method for band structure calculations. The description of computational methods comprises an overview of the implemented numerical routines, a derivation of the spectral properties of the transmission-line modeling method in periodic domains, and the development of an efficient sparse matrix eigenvalue algorithm that formed the basis of the spectral transmission-line modeling method. The discussion of experimental methods considers the use of liquid crystals in microwave applications and details the design and fabrication of several devices. These include a series of modified twisted nematic cells that were used to evaluate liquid crystal alignment and switching, a patch resonator that was used to measure liquid crystal permittivity, and the liquid crystal photonic bandgap device itself. Numerical experiments showed that the spectral transmission-line modeling method is accurate and substantially faster and less memory intensive than the reference plane wave method for problems of high dielectric contrast or rapidly varying spatial detail. Physical experiments successfully realized a microwave photonic bandgap structure whose bandgap could be continuously tuned with a bias voltage. The very good agreement between simulated and measured results validate the computational and experimental methods used, particularly the resonance-based technique for permittivity measurement. This work's results may be applied to many applications, including microwave filters, negative group velocity/negative refraction materials, and microwave permittivity measurement of liquid crystals.
4

Dynamically Tunable Photonic Bandgap Materials

Schaub, Dominic Etienne 13 October 2010 (has links)
Photonic bandgap materials are periodic structures that exclude electromagnetic field propagation over frequency intervals known as bandgaps. These materials exhibit remarkable wave dispersion and have found use in many applications that require control over dynamic electromagnetic fields, as their properties can be tailored by design. The two principal objectives of this thesis are the development of a liquid crystal-based microwave photonic bandgap device whose bandgap could be tuned during operation and the design and implementation of a spectral transmission-line modeling method for band structure calculations. The description of computational methods comprises an overview of the implemented numerical routines, a derivation of the spectral properties of the transmission-line modeling method in periodic domains, and the development of an efficient sparse matrix eigenvalue algorithm that formed the basis of the spectral transmission-line modeling method. The discussion of experimental methods considers the use of liquid crystals in microwave applications and details the design and fabrication of several devices. These include a series of modified twisted nematic cells that were used to evaluate liquid crystal alignment and switching, a patch resonator that was used to measure liquid crystal permittivity, and the liquid crystal photonic bandgap device itself. Numerical experiments showed that the spectral transmission-line modeling method is accurate and substantially faster and less memory intensive than the reference plane wave method for problems of high dielectric contrast or rapidly varying spatial detail. Physical experiments successfully realized a microwave photonic bandgap structure whose bandgap could be continuously tuned with a bias voltage. The very good agreement between simulated and measured results validate the computational and experimental methods used, particularly the resonance-based technique for permittivity measurement. This work's results may be applied to many applications, including microwave filters, negative group velocity/negative refraction materials, and microwave permittivity measurement of liquid crystals.
5

Dispersion Characteristics of One-dimensional Photonic Band Gap Structures Composed of Metallic Inclusions

Khodami, Maryam 22 August 2012 (has links)
An innovative approach for characterization of one dimensional Photonic Band Gap structures comprised of metallic inclusions (i.e. subwavelength dipole elements or resonant ring elements) is presented. Through an efficient S- to T-parameters conversion technique, a detailed analysis has been performed to investigate the variation of the dispersion characteristics of 1-D PBG structures as a function of the cell element configuration. Also, for the first time, the angular sensitivity of the structure has been studied in order to obtain the projected band diagrams for both TE and TM polarizations. Polarization sensitivity of the subwavelength cell element is exploited to propose a novel combination of elements which allows achieving PBGs with simultaneous frequency and polarization selectivity. The proposed approach demonstrates that the dispersion characteristic of each orthogonal polarization can be independently adjusted with dipole elements parallel to that same polarization. Generally, the structure has potential applications in orthomode transducer, and generally whenever the polarization of the incoming signal is to be used as a means of separating it from another signal in the same frequency band that is of orthogonal polarization. The current distribution and the resonance behavior of the ring element is studied and the effect of resonance on dispersion characteristics of 1-D PBGs composed of rings is investigated for the first time, for both individual and coupled rings. Interestingly, it is observed that 1-D PBG composed of resonant elements consistently has a bandgap around the resonant frequency of the single layer structure.
6

Dispersion Characteristics of One-dimensional Photonic Band Gap Structures Composed of Metallic Inclusions

Khodami, Maryam 22 August 2012 (has links)
An innovative approach for characterization of one dimensional Photonic Band Gap structures comprised of metallic inclusions (i.e. subwavelength dipole elements or resonant ring elements) is presented. Through an efficient S- to T-parameters conversion technique, a detailed analysis has been performed to investigate the variation of the dispersion characteristics of 1-D PBG structures as a function of the cell element configuration. Also, for the first time, the angular sensitivity of the structure has been studied in order to obtain the projected band diagrams for both TE and TM polarizations. Polarization sensitivity of the subwavelength cell element is exploited to propose a novel combination of elements which allows achieving PBGs with simultaneous frequency and polarization selectivity. The proposed approach demonstrates that the dispersion characteristic of each orthogonal polarization can be independently adjusted with dipole elements parallel to that same polarization. Generally, the structure has potential applications in orthomode transducer, and generally whenever the polarization of the incoming signal is to be used as a means of separating it from another signal in the same frequency band that is of orthogonal polarization. The current distribution and the resonance behavior of the ring element is studied and the effect of resonance on dispersion characteristics of 1-D PBGs composed of rings is investigated for the first time, for both individual and coupled rings. Interestingly, it is observed that 1-D PBG composed of resonant elements consistently has a bandgap around the resonant frequency of the single layer structure.
7

Dispersion Characteristics of One-dimensional Photonic Band Gap Structures Composed of Metallic Inclusions

Khodami, Maryam January 2012 (has links)
An innovative approach for characterization of one dimensional Photonic Band Gap structures comprised of metallic inclusions (i.e. subwavelength dipole elements or resonant ring elements) is presented. Through an efficient S- to T-parameters conversion technique, a detailed analysis has been performed to investigate the variation of the dispersion characteristics of 1-D PBG structures as a function of the cell element configuration. Also, for the first time, the angular sensitivity of the structure has been studied in order to obtain the projected band diagrams for both TE and TM polarizations. Polarization sensitivity of the subwavelength cell element is exploited to propose a novel combination of elements which allows achieving PBGs with simultaneous frequency and polarization selectivity. The proposed approach demonstrates that the dispersion characteristic of each orthogonal polarization can be independently adjusted with dipole elements parallel to that same polarization. Generally, the structure has potential applications in orthomode transducer, and generally whenever the polarization of the incoming signal is to be used as a means of separating it from another signal in the same frequency band that is of orthogonal polarization. The current distribution and the resonance behavior of the ring element is studied and the effect of resonance on dispersion characteristics of 1-D PBGs composed of rings is investigated for the first time, for both individual and coupled rings. Interestingly, it is observed that 1-D PBG composed of resonant elements consistently has a bandgap around the resonant frequency of the single layer structure.
8

Subwavelength-scale Light Localization in Complete Photonic Bandgap Materials

Tang, Lingling January 2010 (has links)
<p>The objective of this dissertation work is to examine light localization in semiconductors provided by a complete photonic bandgap via three-dimensional (3D) woodpile photonic crystals. A 3D photonic crystal is a periodic nanostructure that demonstrates omni-directional Bragg reflection. These materials are anticipated to become a powerful tool for engineering light propagation and localization within subwavelength scales due to their complete photonic bandgap and the distinctive dispersion relation. </p><p>The approach of realizing microcavities in this dissertation is to combine multi-directional etching fabrication methods with mode gap design. Modulation of unit cell size along a line-defect 3D waveguide could bring a guiding mode into the mode gap region of the waveguide and form a microcavity with a resonance inside the complete photonic bandgap. The designed microcavities could be fabricated by multi-directional etching methods because they can structurally be decomposed into two sets of connected and straight dielectric rods. </p><p>Ultra-high-quality factor microcavities and sub-wavelength-scale waveguides are designed without introduction of local disorders. Monopole, dipole, and quadrupole resonant modes are demonstrated with a small modal volume. The smallest modal volumes obtained are 0.36 cubic half-wavelengths for a resonance field in vacuum, and 2.88 cubic half-wavelengths for a resonance field in a dielectric. Direct metal contacts with the microcavities do not significantly deteriorate the quality factors because the resonant fields are located inside the microcavities. Single-mode woodpile waveguides are also designed in both lateral and vertical propagation directions. </p><p>The multi-directional etching method is a simple approach to the fabrication of woodpile photonic crystals and designed optical components with a variety of crystal orientations and surfaces, including (110), (001), (100), and (010) planes. An arbitrary surface plane (mn0) is obtained with this method, where m and n are integers. Moreover, it can also produce large area woodpile photonic crystals with high precision in silicon and GaAs materials.</p><p>These optical components in woodpile photonic crystals would be building blocks of high-density, low-loss 3D integrated optics, cavity quantum electrodynamics (QED), nonlinear optics, and enable the realization of current-injection optical devices.</p> / Dissertation
9

Design and Characterization of 2D and 3D Photonic Crystal Fibers

Wu, Sung-Ping 15 July 2006 (has links)
Because of the fast growing in communications, the quality of signal transmission in optical fiber becomes very important. Concurrently, photonic crystal fiber (PCF) consisting of a central defect region surrounded by multiple air holes is attracting much attention in recent years because of its unique properties, such as full photonic bandgaps, wideband, dispersion, endlessly single mode and birefringence, etc. This thesis is mainly focused on the development of the photonic band structures and propagation properties of PCF. And we propose a novel ideal about 3-D PCF, which can be fabricated using the laser heated pedestal growth (LHPG) method. In the thesis, we study the optical properties of 2-D and 3-D PCFs made by Pyrex using the software RSoft. From the result of simulation, the 2-D out-of-plane bandgaps for a hexagonal close packed structure appear between the air filling fraction range from 0.30 to 0.88 for the incident light of wavelength range from 0.7 to 1
10

Characterization and Power Scaling of Beam-Combinable Ytterbium-Doped Microstructured Fiber Amplifiers

Mart, Cody W., Mart, Cody W. January 2017 (has links)
In this dissertation, high-power ytterbium-doped fiber amplifiers designed with advanced waveguide concepts are characterized and power scaled. Fiber waveguides utilizing cladding microstructures to achieve wave guidance via the photonic bandgap (PBG) effect and a combination of PBG and modified total internal reflection (MTIR) have been proposed as viable single-mode waveguides. Such novel structures allow larger core diameters (>35 μm diameters) than conventional step-index fibers while still maintaining near-diffraction limited beam quality. These microstructured fibers are demonstrated as robust single-mode waveguides at low powers and are power scaled to realize the thermal power limits of the structure. Here above a certain power threshold, these coiled few-mode fibers have been shown to be limited by modal instability (MI); where energy is dynamically transferred between the fundamental mode and higher-order modes. Nonlinear effects such as stimulated Brillouin scattering (SBS) are also studied in these fiber waveguides as part of this dissertation. Suppressing SBS is critical towards achieving narrow optical bandwidths (linewidths) necessary for efficient fiber amplifier beam combining. Towards that end, new effects that favorably reduce acoustic wave dispersion to increase the SBS threshold are discovered and reported. The first advanced waveguide examined is a Yb-doped 50/400 µm diameter core/clad PBGF. The PBGF is power scaled with a single-frequency 1064 nm seed to an MI-limited 410 W with 79% optical-to-optical efficiency and near-diffraction limited beam quality (M-Squared < 1.25) before MI onset. To this author's knowledge, this represents 2.4x improvement in power output from a PBGF amplifier without consideration for linewidth and a 16x improvement in single-frequency power output from a PBGF amplifier. During power scaling of the PBGF, a remarkably low Brillouin response was elicited from the fiber even when the ultra large diameter 50 µm core is accounted for in the SBS threshold equation. Subsequent interrogation of the Brillouin response in a pump probe Brillouin gain spectrum diagnostic estimated a Brillouin gain coefficient, gB, of 0.62E-11 m/W; which is 4x reduced from standard silica-based fiber. A finite element numerical model that solves the inhomogenous Helmholtz equation that governs the acoustic and optical coupling in SBS is utilized to verify experimental results with an estimated gB = 0.68E-11 m/W. Consequently, a novel SBS-suppression mechanism based on inclusion of sub-optical wavelength acoustic features in the core is proposed. The second advanced waveguide analyzed is a 35/350 µm diameter core/clad fiber that achieved wave guidance via both PBG and MTIR, and is referred to as a hybrid fiber. The waveguide benefits mutually from the amenable properties of PBG and MTIR wave guidance because robust single-mode propagation with minimal confinement loss is assured due to MTIR effects, and the waveguide spectrally filters unwanted wavelengths via the PBG effect. The waveguide employs annular Yb-doped gain tailoring to reduce thermal effects and mitigate MI. Moreover, it is designed to suppress Raman processes for a 1064 nm signal by attenuating wavelengths > 1110 nm via the PBG effect. When seeded with a 1064 nm signal deterministically broadened to ~1 GHz, the hybrid fiber was power scaled to a MI-limited 820 W with 78% optical-to-optical efficiency and near diffraction limited beam quality of M_Squared ~1.2 before MI onset. This represents a 14x improvement in power output from a hybrid fiber, and demonstrates that this type of fiber amplifier is a quality candidate for further power scaling for beam combining.

Page generated in 0.0715 seconds