• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization and Power Scaling of Beam-Combinable Ytterbium-Doped Microstructured Fiber Amplifiers

Mart, Cody W., Mart, Cody W. January 2017 (has links)
In this dissertation, high-power ytterbium-doped fiber amplifiers designed with advanced waveguide concepts are characterized and power scaled. Fiber waveguides utilizing cladding microstructures to achieve wave guidance via the photonic bandgap (PBG) effect and a combination of PBG and modified total internal reflection (MTIR) have been proposed as viable single-mode waveguides. Such novel structures allow larger core diameters (>35 μm diameters) than conventional step-index fibers while still maintaining near-diffraction limited beam quality. These microstructured fibers are demonstrated as robust single-mode waveguides at low powers and are power scaled to realize the thermal power limits of the structure. Here above a certain power threshold, these coiled few-mode fibers have been shown to be limited by modal instability (MI); where energy is dynamically transferred between the fundamental mode and higher-order modes. Nonlinear effects such as stimulated Brillouin scattering (SBS) are also studied in these fiber waveguides as part of this dissertation. Suppressing SBS is critical towards achieving narrow optical bandwidths (linewidths) necessary for efficient fiber amplifier beam combining. Towards that end, new effects that favorably reduce acoustic wave dispersion to increase the SBS threshold are discovered and reported. The first advanced waveguide examined is a Yb-doped 50/400 µm diameter core/clad PBGF. The PBGF is power scaled with a single-frequency 1064 nm seed to an MI-limited 410 W with 79% optical-to-optical efficiency and near-diffraction limited beam quality (M-Squared < 1.25) before MI onset. To this author's knowledge, this represents 2.4x improvement in power output from a PBGF amplifier without consideration for linewidth and a 16x improvement in single-frequency power output from a PBGF amplifier. During power scaling of the PBGF, a remarkably low Brillouin response was elicited from the fiber even when the ultra large diameter 50 µm core is accounted for in the SBS threshold equation. Subsequent interrogation of the Brillouin response in a pump probe Brillouin gain spectrum diagnostic estimated a Brillouin gain coefficient, gB, of 0.62E-11 m/W; which is 4x reduced from standard silica-based fiber. A finite element numerical model that solves the inhomogenous Helmholtz equation that governs the acoustic and optical coupling in SBS is utilized to verify experimental results with an estimated gB = 0.68E-11 m/W. Consequently, a novel SBS-suppression mechanism based on inclusion of sub-optical wavelength acoustic features in the core is proposed. The second advanced waveguide analyzed is a 35/350 µm diameter core/clad fiber that achieved wave guidance via both PBG and MTIR, and is referred to as a hybrid fiber. The waveguide benefits mutually from the amenable properties of PBG and MTIR wave guidance because robust single-mode propagation with minimal confinement loss is assured due to MTIR effects, and the waveguide spectrally filters unwanted wavelengths via the PBG effect. The waveguide employs annular Yb-doped gain tailoring to reduce thermal effects and mitigate MI. Moreover, it is designed to suppress Raman processes for a 1064 nm signal by attenuating wavelengths > 1110 nm via the PBG effect. When seeded with a 1064 nm signal deterministically broadened to ~1 GHz, the hybrid fiber was power scaled to a MI-limited 820 W with 78% optical-to-optical efficiency and near diffraction limited beam quality of M_Squared ~1.2 before MI onset. This represents a 14x improvement in power output from a hybrid fiber, and demonstrates that this type of fiber amplifier is a quality candidate for further power scaling for beam combining.
2

Diode-Pumped High-Energy Laser Amplifiers for Ultrashort Laser Pulses The PENELOPE Laser System

Löser, Markus 23 January 2018 (has links) (PDF)
The ultrashort chirped pulse amplification (CPA) laser technology opens the path to high intensities of 10^21 W/cm² and above in the laser focus. Such intensities allow laser-matter interaction in the relativistic intensity regime. Direct diode-pumped ultrashort solid-state lasers combine high-energy, high-power and efficient amplification together, which are the main advantages compared to flashlamp-pumped high-energy laser systems based on titanium-doped sapphire. Development within recent years in the field of laser diodes makes them more and more attractive in terms of total costs, compactness and lifetime. This work is dedicated to the Petawatt, ENergy-Efficient Laser for Optical Plasma Experiments (PENELOPE) project, a fully and directly diode-pumped laser system under development at the Helmholtz–Zentrum Dresden – Rossendorf (HZDR), aiming at 150 fs long pulses with energies of up to 150 J at repetition rates of up to 1 Hz. The focus of this thesis lies on the spectral and width manipulation of the front-end amplifiers, trivalent ytterbium-doped calcium fluoride (Yb3+:CaF2) as gain material as well as the pump source for the final two main amplifiers of the PENELOPE laser system. Here, all crucial design parameters were investigated and a further successful scaling of the laser system to its target values was shown. Gain narrowing is the dominant process for spectral bandwidth reduction during the amplification at the high-gain front-end amplifiers. Active or passive spectral gain control filter can be used to counteract this effect. A pulse duration of 121 fs was achieved by using a passive spectral attenuation inside a regenerative amplifier, which corresponds to an improvement by a factor of almost 2 compared to the start of this work. A proof-of-concept experiment showed the capability of the pre-shaping approach. A spectral bandwidth of 20nm was transferred through the first multipass amplifier at a total gain of 300. Finally, the predicted output spectrum calculated by a numerical model of the final amplifier stages was in a good agreement with the experimental results. The spectroscopic properties of Yb3+:CaF2 matches the constraints for ultrashort laser pulse amplification and direct diode pumping. Pumping close to the zero phonon line at 976nm is preferable compared to 940nm as the pump intensity saturation is significantly lower. A broad gain cross section of up to 50nm is achievable for typical inversion levels. Furthermore, moderate cryogenic temperatures (above 200K) can be used to improve the amplification performance of Yb3+:CaF2. The optical quality of the doped crystals currently available on the market is sufficient to build amplifiers in the hundred joule range. The designed pump source for the last two amplifiers is based on two side pumping in a double pass configuration. However, this concept requires the necessity of brightness conservation for the installed laser diodes. Therefore, a fully relay imaging setup (4f optical system) along the optical path from the stacks to the gain material including the global beam homogenization was developed in a novel approach. Beside these major parts the amplifier architecture and relay imaging telescopes as well as temporal intensity contrast (TIC) was investigated. An all reflective concept for the relay imaging amplifiers and telescopes was selected, which results in several advantages especially an achromatic behavior and low B-Integral. The TIC of the front-end was improved, as the pre- and postpulses due to the plane-parallel active-mirror was eliminated by wedging the gain medium.
3

Diode-Pumped High-Energy Laser Amplifiers for Ultrashort Laser Pulses The PENELOPE Laser System

Löser, Markus 16 November 2017 (has links)
The ultrashort chirped pulse amplification (CPA) laser technology opens the path to high intensities of 10^21 W/cm² and above in the laser focus. Such intensities allow laser-matter interaction in the relativistic intensity regime. Direct diode-pumped ultrashort solid-state lasers combine high-energy, high-power and efficient amplification together, which are the main advantages compared to flashlamp-pumped high-energy laser systems based on titanium-doped sapphire. Development within recent years in the field of laser diodes makes them more and more attractive in terms of total costs, compactness and lifetime. This work is dedicated to the Petawatt, ENergy-Efficient Laser for Optical Plasma Experiments (PENELOPE) project, a fully and directly diode-pumped laser system under development at the Helmholtz–Zentrum Dresden – Rossendorf (HZDR), aiming at 150 fs long pulses with energies of up to 150 J at repetition rates of up to 1 Hz. The focus of this thesis lies on the spectral and width manipulation of the front-end amplifiers, trivalent ytterbium-doped calcium fluoride (Yb3+:CaF2) as gain material as well as the pump source for the final two main amplifiers of the PENELOPE laser system. Here, all crucial design parameters were investigated and a further successful scaling of the laser system to its target values was shown. Gain narrowing is the dominant process for spectral bandwidth reduction during the amplification at the high-gain front-end amplifiers. Active or passive spectral gain control filter can be used to counteract this effect. A pulse duration of 121 fs was achieved by using a passive spectral attenuation inside a regenerative amplifier, which corresponds to an improvement by a factor of almost 2 compared to the start of this work. A proof-of-concept experiment showed the capability of the pre-shaping approach. A spectral bandwidth of 20nm was transferred through the first multipass amplifier at a total gain of 300. Finally, the predicted output spectrum calculated by a numerical model of the final amplifier stages was in a good agreement with the experimental results. The spectroscopic properties of Yb3+:CaF2 matches the constraints for ultrashort laser pulse amplification and direct diode pumping. Pumping close to the zero phonon line at 976nm is preferable compared to 940nm as the pump intensity saturation is significantly lower. A broad gain cross section of up to 50nm is achievable for typical inversion levels. Furthermore, moderate cryogenic temperatures (above 200K) can be used to improve the amplification performance of Yb3+:CaF2. The optical quality of the doped crystals currently available on the market is sufficient to build amplifiers in the hundred joule range. The designed pump source for the last two amplifiers is based on two side pumping in a double pass configuration. However, this concept requires the necessity of brightness conservation for the installed laser diodes. Therefore, a fully relay imaging setup (4f optical system) along the optical path from the stacks to the gain material including the global beam homogenization was developed in a novel approach. Beside these major parts the amplifier architecture and relay imaging telescopes as well as temporal intensity contrast (TIC) was investigated. An all reflective concept for the relay imaging amplifiers and telescopes was selected, which results in several advantages especially an achromatic behavior and low B-Integral. The TIC of the front-end was improved, as the pre- and postpulses due to the plane-parallel active-mirror was eliminated by wedging the gain medium.
4

[en] ANALYSIS OF THE FEASIBILITY OF DRILLING OF ROCKS WITH LASERS / [pt] ANÁLISE DA VIABILIDADE DA PERFURAÇÃO EM ROCHAS COM A UTILIZAÇÃO DO LASER

RENATO AMARO 27 February 2019 (has links)
[pt] Um dos maiores desafios na perfuração das rochas carbonáticas, situadas a grandes profundidades, é superar as baixas taxas de penetração que vem sendo obtidas na perfuração de poços verticais e direcionais. Para vencer este desafio, um grande esforço vem sendo desenvolvido em várias linhas de pesquisa, tanto no desenvolvimento de novos conceitos de brocas como na seleção de um sistema de perfuração que apresente um melhor desempenho. Para atingir este objetivo, estão sendo priorizados procedimentos e sistemas de perfuração que apresentem menores níveis de vibração, pois este fenômeno além de reduzir a eficiência da perfuração, também compromete o tempo de vida útil dos equipamentos e, por consequência, acarreta a redução da confiabilidade do sistema e eleva o custo por metro da perfuração. Por conseguinte, novas tecnologias de brocas e sistemas de perfuração estão em desenvolvimento e, dentre as novas tecnologias, podemos diferenciar aquelas que promovem melhorias nas tecnologias convencionais e as tecnologias francamente inovadoras, aquelas que utilizam novos mecanismos para cortar ou fragilizar a rocha. Dentre as tecnologias inovadoras, a perfuração assistida por laser é uma das mais promissoras, nesta versão o feixe da energia radiante tem a função principal de fragilizar a rocha, facilitando o avanço da perfuração. Esta dissertação tem por objetivo realizar uma avaliação das possibilidades de aplicação da tecnologia laser na perfuração de rochas. O meio através do qual o laser deverá atuar nas aplicações futuras é analisado sobre o enfoque das suas propriedades físico-químicas. Dessa forma, o conhecimento da interação com o fluido de perfuração é o ponto de partida para a análise de viabilidade. Inicialmente, análises de absorção ótica foram realizadas em alguns tipos de fluido utilizados na indústria do petróleo e, na sequência, foram realizados testes de bancada com um dispositivo eletro-mecânico, especialmente desenvolvido, para servir de base para o laser, com potência máxima de 1500 W, direcionado sobre amostras de rochas carbonáticas. A análise de absorção ótica tem por objetivo compreender melhor o processo de interação do laser com o fluido de perfuração. Os testes de absorção ótica foram realizados para avaliar a absorção da luz, na faixa de comprimento de onda entre 800 nm até 1200 nm. A partir destas informações foi dado o primeiro passo no conhecimento da interação com o fluido de perfuração. Na seqüência da abordagem, um resumo, em nível de pesquisa bibliográfica é apresentado com os estudos, análises e testes de bancada já realizados por vários pesquisadores para verificar o estágio de desenvolvimento desta tecnologia inovadora. A partir deste conhecimento, será possível fazer uma inferência sobre as reais possibilidades desta tecnologia e iniciar um levantamento preliminar sobre os pontos considerados críticos para a sua aplicação, no cenário de perfuração de um poço de petróleo. O cenário de perfuração, como se sabe, é um ambiente agressivo, sujeito a altas vibrações, temperaturas e pressões elevadas. Para concluir, serão apresentados os resultados obtidos em teste de bancada com dispositivo especificamente construído para a fundamentação das conclusões da dissertação. Dentre os aspectos mais relevantes, podemos mencionar: a determinação da durabilidade do sistema, considerando a resistência da lente de focalização ao aquecimento provocado pelo laser e, também, uma avaliação da eficiência do processo sob o ponto de vista do valor obtido para a energia específica. Em resumo, o objetivo final dessa dissertação é o de concentrar em um documento as informações mais atualizadas sobre a utilização do laser na perfuração de rochas e apresentar uma análise, ainda que preliminar, sobre os possíveis pontos de melhoria que permitam viabilizar esta tecnologia no futuro. / [en] One of the biggest challenges in drilling the carbonate rocks located at great depths is to overcome low penetration drilling rates that have been obtained in vertical and directional wells. To overcome this challenge, a great effort is being developed on multiple lines of research. All of them are focused in new concepts of drilling procedures and the selection of a drilling system that presents a better performance. To achieve this goal, new procedures are being designed and drilling systems with lower vibration levels are under development. Vibration reduces the efficiency of drilling, also decreases the lifetime of equipment and consequently causes a reduction in reliability of all system and raises the drilling costs. Consequently, new drill bit technologies and drilling systems are being developed and, among the new technologies we can differentiate those that only promote improvements in conventional technologies and those innovative technologies, in which new mechanisms to cut or weaken the rock are used. The drilling assisted laser is one of the most promising mechanism in which the radiant energy beam has the primary function to weaken the rock increasing the performance of drilling process. This dissertation aims to perform an assessment of the possibilities of laser technology in rock drilling applications. The laser will have to pass through the drilling fluid in the future applications so it is very important to understand their physicochemical properties and their mutual interaction. For this reason, the knowledge of the interaction with the drilling fluid is the starting point for this work. First of all, it will be accomplished an analysis of optical absorption in some types of fluid used in the oil industry. After that, it will be performed bench testing with an electro-mechanical device that will support a laser whose maximum power can reach 1500 W and it will be pointed to carbonate rock samples. The optical absorption analysis aims to better understand the interaction of the laser with the drilling fluid. The optical absorption tests are performed to evaluate the absorption of light in the wavelength range from 800 nm to 1200 nm. From this information, it will be taken the first step to understand the interaction with the drilling fluid, which is the starting point for the feasibility study of the use of lasers. Following the approach, a literature review will be presented with the studies, analysis and bench testing already conducted by various researchers to check the stage of development of this new technology. Taking into account this knowledge, it will be possible to make an initial approach about the actual possibilities of this technology and initiate a preliminary survey on the questions that are critical to its application in a drilling scenario in the well construction, an aggressive environment which is subject to high vibrations, high temperatures and pressures. To conclude, we present the results obtained in bench testing with device specifically built for supporting the conclusions of the dissertation. Among the most relevant aspects, we can mention the durability of the system, considering the focusing lens lifetime under the heating effects caused by the laser. Another point, it is to make an evaluation of the performance of drilling process, considering the specific energy. In summary, the ultimate goal of this dissertation is to concentrate in a single document the most current information about the use of laser drilling and present an analysis, though preliminary, about the possible improvement points that will allow the feasibility of this technology in the future.
5

Diode-Pumped High-Energy Laser Amplifiers for Ultrashort Laser Pulses / Diodengepumpte hochenergetische Laserverstärker für ultrakurze Laserpulse. Das PENELOPE Lasersystem

Loeser, Markus 22 January 2018 (has links) (PDF)
The ultrashort chirped pulse amplification (CPA) laser technology opens the path to high intensities of 10^21 W/cm² and above in the laser focus. Such intensities allow laser-matter interaction in the relativistic intensity regime. Direct diode-pumped ultrashort solid-state lasers combine high-energy, high-power and efficient amplification together, which are the main advantages compared to flashlamp-pumped high-energy laser systems based on titanium-doped sapphire. Development within recent years in the field of laser diodes makes them more and more attractive in terms of total costs, compactness and lifetime. This work is dedicated to the Petawatt, ENergy-Efficient Laser for Optical Plasma Experiments (PENELOPE) project, a fully and directly diode-pumped laser system under development at the Helmholtz–Zentrum Dresden – Rossendorf (HZDR), aiming at 150 fs long pulses with energies of up to 150 J at repetition rates of up to 1 Hz. The focus of this thesis lies on the spectral and width manipulation of the front-end amplifiers, trivalent ytterbium-doped calcium fluoride (Yb3+:CaF2) as gain material as well as the pump source for the final two main amplifiers of the PENELOPE laser system. Here, all crucial design parameters were investigated and a further successful scaling of the laser system to its target values was shown. Gain narrowing is the dominant process for spectral bandwidth reduction during the amplification at the high-gain front-end amplifiers. Active or passive spectral gain control filter can be used to counteract this effect. A pulse duration of 121 fs was achieved by using a passive spectral attenuation inside a regenerative amplifier, which corresponds to an improvement by a factor of almost 2 compared to the start of this work. A proof-of-concept experiment showed the capability of the pre-shaping approach. A spectral bandwidth of 20nm was transferred through the first multipass amplifier at a total gain of 300. Finally, the predicted output spectrum calculated by a numerical model of the final amplifier stages was in a good agreement with the experimental results. The spectroscopic properties of Yb3+:CaF2 matches the constraints for ultrashort laser pulse amplification and direct diode pumping. Pumping close to the zero phonon line at 976nm is preferable compared to 940nm as the pump intensity saturation is significantly lower. A broad gain cross section of up to 50nm is achievable for typical inversion levels. Furthermore, moderate cryogenic temperatures (above 200K) can be used to improve the amplification performance of Yb3+:CaF2. The optical quality of the doped crystals currently available on the market is sufficient to build amplifiers in the hundred joule range. The designed pump source for the last two amplifiers is based on two side pumping in a double pass configuration. However, this concept requires the necessity of brightness conservation for the installed laser diodes. Therefore, a fully relay imaging setup (4f optical system) along the optical path from the stacks to the gain material including the global beam homogenization was developed in a novel approach. Beside these major parts the amplifier architecture and relay imaging telescopes as well as temporal intensity contrast (TIC) was investigated. An all reflective concept for the relay imaging amplifiers and telescopes was selected, which results in several advantages especially an achromatic behavior and low B-Integral. The TIC of the front-end was improved, as the pre- and postpulses due to the plane-parallel active-mirror was eliminated by wedging the gain medium.
6

Diode-Pumped High-Energy Laser Amplifiers for Ultrashort Laser Pulses: The PENELOPE Laser System

Löser, Markus 22 January 2018 (has links)
The ultrashort chirped pulse amplification (CPA) laser technology opens the path to high intensities of 10^21 W/cm² and above in the laser focus. Such intensities allow laser-matter interaction in the relativistic intensity regime. Direct diode-pumped ultrashort solid-state lasers combine high-energy, high-power and efficient amplification together, which are the main advantages compared to flashlamp-pumped high-energy laser systems based on titanium-doped sapphire. Development within recent years in the field of laser diodes makes them more and more attractive in terms of total costs, compactness and lifetime. This work is dedicated to the Petawatt, ENergy-Efficient Laser for Optical Plasma Experiments (PENELOPE) project, a fully and directly diode-pumped laser system under development at the Helmholtz–Zentrum Dresden – Rossendorf (HZDR), aiming at 150 fs long pulses with energies of up to 150 J at repetition rates of up to 1 Hz. The focus of this thesis lies on the spectral and width manipulation of the front-end amplifiers, trivalent ytterbium-doped calcium fluoride (Yb3+:CaF2) as gain material as well as the pump source for the final two main amplifiers of the PENELOPE laser system. Here, all crucial design parameters were investigated and a further successful scaling of the laser system to its target values was shown. Gain narrowing is the dominant process for spectral bandwidth reduction during the amplification at the high-gain front-end amplifiers. Active or passive spectral gain control filter can be used to counteract this effect. A pulse duration of 121 fs was achieved by using a passive spectral attenuation inside a regenerative amplifier, which corresponds to an improvement by a factor of almost 2 compared to the start of this work. A proof-of-concept experiment showed the capability of the pre-shaping approach. A spectral bandwidth of 20nm was transferred through the first multipass amplifier at a total gain of 300. Finally, the predicted output spectrum calculated by a numerical model of the final amplifier stages was in a good agreement with the experimental results. The spectroscopic properties of Yb3+:CaF2 matches the constraints for ultrashort laser pulse amplification and direct diode pumping. Pumping close to the zero phonon line at 976nm is preferable compared to 940nm as the pump intensity saturation is significantly lower. A broad gain cross section of up to 50nm is achievable for typical inversion levels. Furthermore, moderate cryogenic temperatures (above 200K) can be used to improve the amplification performance of Yb3+:CaF2. The optical quality of the doped crystals currently available on the market is sufficient to build amplifiers in the hundred joule range. The designed pump source for the last two amplifiers is based on two side pumping in a double pass configuration. However, this concept requires the necessity of brightness conservation for the installed laser diodes. Therefore, a fully relay imaging setup (4f optical system) along the optical path from the stacks to the gain material including the global beam homogenization was developed in a novel approach. Beside these major parts the amplifier architecture and relay imaging telescopes as well as temporal intensity contrast (TIC) was investigated. An all reflective concept for the relay imaging amplifiers and telescopes was selected, which results in several advantages especially an achromatic behavior and low B-Integral. The TIC of the front-end was improved, as the pre- and postpulses due to the plane-parallel active-mirror was eliminated by wedging the gain medium.
7

Investigation of Specialized Laser and Optical Techniques to Improve Precision Atomic Spectroscopy of Helium

Currey, Ronnie 05 1900 (has links)
The aim of this thesis is to develop both Yb and Tm fiber laser sources with all fiber cavities. Both wavelength ranges provide useful laser sources for optical pumping of helium. The goal is to develop Tm laser sources operating at 2058 nm to optically quench 3He (2058.63 nm) and 4He (2058.69 nm) singlets (21S0). We also have developed Yb laser sources at 1083 nm to optical pump the triplet states of helium and laser cool an atomic beam of helium.
8

Spray Cooling For Land, Sea, Air And Space Based Applications, A Fluid Managment System For Multiple Nozzle Spray Cooling And A Guide To High Heat Flux Heater Design

Glassman, Brian 01 January 2005 (has links)
This thesis is divided into four distinct chapters all linked by the topic of spray cooling. Chapter one gives a detailed categorization of future and current spray cooling applications, and reviews the major advantages and disadvantages that spray cooling has over other high heat flux cooling techniques. Chapter two outlines the developmental goals of spray cooling, which are to increase the output of a current system and to enable new technologies to be technically feasible. Furthermore, this chapter outlines in detail the impact that land, air, sea, and space environments have on the cooling system and what technologies could be enabled in each environment with the aid of spray cooling. In particular, the heat exchanger, condenser and radiator are analyzed in their corresponding environments. Chapter three presents an experimental investigation of a fluid management system for a large area multiple nozzle spray cooler. A fluid management or suction system was used to control the liquid film layer thickness needed for effective heat transfer. An array of sixteen pressure atomized spray nozzles along with an imbedded fluid suction system was constructed. Two surfaces were spray tested one being a clear grooved Plexiglas plate used for visualization and the other being a bottom heated grooved 4.5 x 4.5 cm2 copper plate used to determine the heat flux. The suction system utilized an array of thin copper tubes to extract excess liquid from the cooled surface. Pure water was ejected from two spray nozzle configurations at flow rates of 0.7 L/min to 1 L/min per nozzle. It was found that the fluid management system provided fluid removal efficiencies of 98% with a 4-nozzle array, and 90% with the full 16-nozzle array for the downward spraying orientation. The corresponding heat fluxes for the 16 nozzle configuration were found with and without the aid of the fluid management system. It was found that the fluid management system increased heat fluxes on the average of 30 W/cm2 at similar values of superheat. Unfortunately, the effectiveness of this array at removing heat at full levels of suction is approximately 50% & 40% of a single nozzle at respective 10[degrees]C & 15[degrees]C values of superheat. The heat transfer data more closely resembled convective pooling boiling. Thus, it was concluded that the poor heat transfer was due to flooding occurring which made the heat transfer mechanism mainly forced convective boiling and not spray cooling. Finally, Chapter four gives a detailed guide for the design and construction of a high heat flux heater for experimental uses where accurate measurements of surface temperatures and heat fluxes are extremely important. The heater designs presented allow for different testing applications; however, an emphasis is placed on heaters designed for use with spray cooling.
9

TELEMETRY IN THEATER MISSILE DEFENSE DEVELOPMENT

Toole, Michael T. 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / Since the Gulf War, there has been significant interest in Theater Missile Defense (TMD) resulting in funding growth from tens of millions of dollars at the time of the Gulf War to $1.7 Billion in 1994. The Ballistic Missile Defense Organization (BMDO) has developed a Theater Missile Defense test and evaluation program that will assess technological feasibility and the degree to which system functionality and performance meet technical and operational requirements. The complexity of the TMD program necessitates a comprehensive test program which includes flight testing, ground testing, and modeling and simulation. This article will provide and overview the requirements and capabilities needed to satisfy these requirements. The data processing, and telemetry communities will play a major role in providing the expertise to support the development of the nation’s future Theater Missile Defense capabilities.

Page generated in 0.0527 seconds