Spelling suggestions: "subject:"photonic systems"" "subject:"hotonic systems""
1 |
Laser rate equations modelling of vertical cavity surface emitting lasers with applications to optical interconnectsMitched, S. Unknown Date (has links)
No description available.
|
2 |
On a photonic bus architecture that incorporates wavelength multiplexing and reuse for reconfigurable computersBoros, V. E. Unknown Date (has links)
No description available.
|
3 |
Optical interconnects using optoelectronic arraysWang, R. Unknown Date (has links)
No description available.
|
4 |
Modelling Diffraction in Optical InterconnectsPetrovic, Novak S. Unknown Date (has links)
Short-distance digital communication links, between chips on a circuit board, or between different circuit boards for example, have traditionally been built by using electrical interconnects - metallic tracks and wires. Recent technological advances have resulted in improvements in the speed of information processing, but have left electrical interconnects intact, thus creating a serious communication problem. Free-space optical interconnects, made up of arrays of vertical-cavity surface-emitting lasers, microlenses, and photodetectors, could be used to solve this problem. If free-space optical interconnects are to successfully replace electrical interconnects, they have to be able to support large rates of information transfer with high channel densities. The biggest obstacle in the way of reaching these requirements is laser beam diffraction. There are three approaches commonly used to model the effects of laser beam diffraction in optical interconnects: one could pursue the path of solving the diffraction integral directly, one could apply stronger approximations with some loss of accuracy of the results, or one could cleverly reinterpret the diffraction problem altogether. None of the representatives of the three categories of existing solutions qualified for our purposes. The main contribution of this dissertation consist of, first, formulating the mode expansion method, and, second, showing that it outperforms all other methods previously used for modelling diffraction in optical interconnects. The mode expansion method allows us to obtain the optical field produced by the diffraction of arbitrary laser beams at empty apertures, phase-shifting optical elements, or any combinations thereof, regardless of the size, shape, position, or any other parameters either of the incident optical field or the observation plane. The mode expansion method enables us to perform all this without any reference or use of the traditional Huygens-Kirchhoff-Fresnel diffraction integrals. When using the mode expansion method, one replaces the incident optical field and the diffracting optical element by an effective beam, possibly containing higher-order transverse modes, so that the ultimate effects of diffraction are equivalently expressed through the complex-valued modal weights. By using the mode expansion method, one represents both the incident and the resultant optical fields in terms of an orthogonal set of functions, and finds the unknown parameters from the condition that the two fields have to be matched at each surface on their propagation paths. Even though essentially a numerical process, the mode expansion method can produce very accurate effective representations of the diffraction fields quickly and efficiently, usually by using no more than about a dozen expanding modes. The second tier of contributions contained in this dissertation is on the subject of the analysis and design of microchannel free-space optical interconnects. In addition to the proper characterisation of the design model, we have formulated several optical interconnect performance parameters, most notably the signal-to-noise ratio, optical carrier-to-noise ratio, and the space-bandwidth product, in a thorough and insightful way that has not been published previously. The proper calculation of those performance parameters, made possible by the mode expansion method, was then performed by using experimentally-measured fields of the incident vertical-cavity surface-emitting laser beams. After illustrating the importance of the proper way of modelling diffraction in optical interconnects, we have shown how to improve the optical interconnect performance by changing either the interconnect optical design, or by careful selection of the design parameter values. We have also suggested a change from the usual 'square' to a novel 'hexagonal' packing of the optical interconnect channels, in order to alleviate the negative diffraction effects. Finally, the optical interconnect tolerance to lateral misalignment, in the presence of multimodal incident laser beams was studied for the first time, and it was shown to be acceptable only as long as most of the incident optical power is emitted in the fundamental Gaussian mode.
|
5 |
Modelling diffraction in optical interconnectsPetrovic, Novak S. Unknown Date (has links)
Short-distance digital communication links, between chips on a circuit board, or between different circuit boards for example, have traditionally been built by using electrical interconnects -- metallic tracks and wires. Recent technological advances have resulted in improvements in the speed of information processing, but have left electrical interconnects intact, thus creating a serious communication problem. Free-space optical interconnects, made up of arrays of vertical-cavity surface-emitting lasers, microlenses, and photodetectors, could be used to solve this problem. If free-space optical interconnects are to successfully replace electrical interconnects, they have to be able to support large rates of information transfer with high channel densities. The biggest obstacle in the way of reaching these requirements is laser beam diffraction. There are three approaches commonly used to model the effects of laser beam diffraction in optical interconnects: one could pursue the path of solving the diffraction integral directly, one could apply stronger approximations with some loss of accuracy of the results, or one could cleverly reinterpret the diffraction problem altogether. None of the representatives of the three categories of existing solutions qualified for our purposes. The main contribution of this dissertation consist of, first, formulating the mode expansion method, and, second, showing that it outperforms all other methods previously used for modelling diffraction in optical interconnects. The mode expansion method allows us to obtain the optical field produced by the diffraction of arbitrary laser beams at empty apertures, phase-shifting optical elements, or any combinations thereof, regardless of the size, shape, position, or any other parameters either of the incident optical field or the observation plane. The mode expansion method enables us to perform all this without any reference or use of the traditional Huygens-Kirchhoff-Fresnel diffraction integrals. When using the mode expansion method, one replaces the incident optical field and the diffracting optical element by an effective beam, possibly containing higher-order transverse modes, so that the ultimate effects of diffraction are equivalently expressed through the complex-valued modal weights. By using the mode expansion method, one represents both the incident and the resultant optical fields in terms of an orthogonal set of functions, and finds the unknown parameters from the condition that the two fields have to be matched at each surface on their propagation paths. Even though essentially a numerical process, the mode expansion method can produce very accurate effective representations of the diffraction fields quickly and efficiently, usually by using no more than about a dozen expanding modes. The second tier of contributions contained in this dissertation is on the subject of the analysis and design of microchannel free-space optical interconnects. In addition to the proper characterisation of the design model, we have formulated several optical interconnect performance parameters, most notably the signal-to-noise ratio, optical carrier-to-noise ratio, and the space-bandwidth product, in a thorough and insightful way that has not been published previously. The proper calculation of those performance parameters, made possible by the mode expansion method, was then performed by using experimentally-measured fields of the incident vertical-cavity surface-emitting laser beams. After illustrating the importance of the proper way of modelling diffraction in optical interconnects, we have shown how to improve the optical interconnect performance by changing either the interconnect optical design, or by careful selection of the design parameter values. We have also suggested a change from the usual `square' to a novel `hexagonal' packing of the optical interconnect channels, in order to alleviate the negative diffraction effects. Finally, the optical interconnect tolerance to lateral misalignment, in the presence of multimodal incident laser beams was studied for the first time, and it was shown to be acceptable only as long as most of the incident optical power is emitted in the fundamental Gaussian mode.
|
6 |
Modelling diffraction in optical interconnectsPetrovic, Novak S. Unknown Date (has links)
Short-distance digital communication links, between chips on a circuit board, or between different circuit boards for example, have traditionally been built by using electrical interconnects -- metallic tracks and wires. Recent technological advances have resulted in improvements in the speed of information processing, but have left electrical interconnects intact, thus creating a serious communication problem. Free-space optical interconnects, made up of arrays of vertical-cavity surface-emitting lasers, microlenses, and photodetectors, could be used to solve this problem. If free-space optical interconnects are to successfully replace electrical interconnects, they have to be able to support large rates of information transfer with high channel densities. The biggest obstacle in the way of reaching these requirements is laser beam diffraction. There are three approaches commonly used to model the effects of laser beam diffraction in optical interconnects: one could pursue the path of solving the diffraction integral directly, one could apply stronger approximations with some loss of accuracy of the results, or one could cleverly reinterpret the diffraction problem altogether. None of the representatives of the three categories of existing solutions qualified for our purposes. The main contribution of this dissertation consist of, first, formulating the mode expansion method, and, second, showing that it outperforms all other methods previously used for modelling diffraction in optical interconnects. The mode expansion method allows us to obtain the optical field produced by the diffraction of arbitrary laser beams at empty apertures, phase-shifting optical elements, or any combinations thereof, regardless of the size, shape, position, or any other parameters either of the incident optical field or the observation plane. The mode expansion method enables us to perform all this without any reference or use of the traditional Huygens-Kirchhoff-Fresnel diffraction integrals. When using the mode expansion method, one replaces the incident optical field and the diffracting optical element by an effective beam, possibly containing higher-order transverse modes, so that the ultimate effects of diffraction are equivalently expressed through the complex-valued modal weights. By using the mode expansion method, one represents both the incident and the resultant optical fields in terms of an orthogonal set of functions, and finds the unknown parameters from the condition that the two fields have to be matched at each surface on their propagation paths. Even though essentially a numerical process, the mode expansion method can produce very accurate effective representations of the diffraction fields quickly and efficiently, usually by using no more than about a dozen expanding modes. The second tier of contributions contained in this dissertation is on the subject of the analysis and design of microchannel free-space optical interconnects. In addition to the proper characterisation of the design model, we have formulated several optical interconnect performance parameters, most notably the signal-to-noise ratio, optical carrier-to-noise ratio, and the space-bandwidth product, in a thorough and insightful way that has not been published previously. The proper calculation of those performance parameters, made possible by the mode expansion method, was then performed by using experimentally-measured fields of the incident vertical-cavity surface-emitting laser beams. After illustrating the importance of the proper way of modelling diffraction in optical interconnects, we have shown how to improve the optical interconnect performance by changing either the interconnect optical design, or by careful selection of the design parameter values. We have also suggested a change from the usual `square' to a novel `hexagonal' packing of the optical interconnect channels, in order to alleviate the negative diffraction effects. Finally, the optical interconnect tolerance to lateral misalignment, in the presence of multimodal incident laser beams was studied for the first time, and it was shown to be acceptable only as long as most of the incident optical power is emitted in the fundamental Gaussian mode.
|
7 |
Hybrid photonic systems consisting of dielectric photonic crystals and plasmonic meta-atoms for nanoscale light manipulation / 誘電体フォトニック結晶とプラズモニックメタ原子結合系におけるナノスケール光制御Lee, Yoonsik 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18284号 / 工博第3876号 / 新制||工||1595(附属図書館) / 31142 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 野田 進, 教授 川上 養一, 教授 藤田 静雄 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
8 |
Efficient architectures for error control using low-density parity-check codesHaley , David January 2004 (has links)
Recent designs for low-density parity-check (LDPC) codes have exhibited capacity approaching performance for large block length, overtaking the performance of turbo codes. While theoretically impressive, LDPC codes present some challenges for practical implementation. In general, LDPC codes have higher encoding complexity than turbo codes both in terms of computational latency and architecture size. Decoder circuits for LDPC codes have a high routing complexity and thus demand large amounts of circuit area. There has been recent interest in developing analog circuit architectures suitable for decoding. These circuits offer a fast, low-power alternative to the digital approach. Analog decoders also have the potential to be significantly smaller than digital decoders. In this thesis we present a novel and efficient approach to LDPC encoder / decoder (codec) design. We propose a new algorithm which allows the parallel decoder architecture to be reused for iterative encoding. We present a new class of LDPC codes which are iteratively encodable, exhibit good empirical performance, and provide a flexible choice of code length and rate. Combining the analog decoding approach with this new encoding technique, we design a novel time-multiplexed LDPC codec, which switches between analog decode and digital encode modes. In order to achieve this behaviour from a single circuit we have developed mode-switching gates. These logic gates are able to switch between analog (soft) and digital (hard) computation, and represent a fundamental circuit design contribution. Mode-switching gates may also be applied to built-in self-test circuits for analog decoders. Only a small overhead in circuit area is required to transform the analog decoder into a full codec. The encode operation can be performed two orders of magnitude faster than the decode operation, making the circuit suitable for full-duplex applications. Throughput of the codec scales linearly with block size, for both encode and decode operations. The low power and small area requirements of the circuit make it an attractive option for small portable devices.
|
9 |
Efficient architectures for error control using low-density parity-check codesHaley , David January 2004 (has links)
Recent designs for low-density parity-check (LDPC) codes have exhibited capacity approaching performance for large block length, overtaking the performance of turbo codes. While theoretically impressive, LDPC codes present some challenges for practical implementation. In general, LDPC codes have higher encoding complexity than turbo codes both in terms of computational latency and architecture size. Decoder circuits for LDPC codes have a high routing complexity and thus demand large amounts of circuit area. There has been recent interest in developing analog circuit architectures suitable for decoding. These circuits offer a fast, low-power alternative to the digital approach. Analog decoders also have the potential to be significantly smaller than digital decoders. In this thesis we present a novel and efficient approach to LDPC encoder / decoder (codec) design. We propose a new algorithm which allows the parallel decoder architecture to be reused for iterative encoding. We present a new class of LDPC codes which are iteratively encodable, exhibit good empirical performance, and provide a flexible choice of code length and rate. Combining the analog decoding approach with this new encoding technique, we design a novel time-multiplexed LDPC codec, which switches between analog decode and digital encode modes. In order to achieve this behaviour from a single circuit we have developed mode-switching gates. These logic gates are able to switch between analog (soft) and digital (hard) computation, and represent a fundamental circuit design contribution. Mode-switching gates may also be applied to built-in self-test circuits for analog decoders. Only a small overhead in circuit area is required to transform the analog decoder into a full codec. The encode operation can be performed two orders of magnitude faster than the decode operation, making the circuit suitable for full-duplex applications. Throughput of the codec scales linearly with block size, for both encode and decode operations. The low power and small area requirements of the circuit make it an attractive option for small portable devices.
|
10 |
Sistemas fotônicos PT-simétricos / PT-symmetric photonic systemsNascimento, José Henrique do 27 July 2018 (has links)
The spatial evolution of a pair of resonant Bragg modes through a medium characterized by a complex one-dimensional PT -symmetric periodic relative electric permittivity is thoroughly investigated. By using the two wave model, analytic solutions of Maxwell’s equations are derived in the nonparaxial regime in order to investigate the periodic energy exchange between the Bragg modes for the Hermitian optical lattices as well as for complex lattices and also to investigate the spatial evolution of the real part of the electric field that propagates through this medium. Three regimes defined by the symmetry breaking point are discussed: below it, above it and at it. These regimes are determined by the existence of four complex eigenvalues below the symmetry breaking point, which collide and coalesce into a pair of complex doubly degenerate eigenvalues at the breaking point. Above the critical value each member of the pair bifurcates into a pair of complex values and now they have a nonzero real part. In the Hermitian case, it is demonstrated that a complete reciprocal energy transfer between the pair of Bragg modes, in a manner similiar to the Pendellösung effect known from X-ray diffraction by a crystal, takes place. When the optical lattice is complex, the dynamics of the energy transfer is completely different from the Hermitian case: below the symmetry breaking point there exist a very nonreciprocal beating-like oscillatory behavior of the energy transfer between the Bragg modes; above the symmetry breaking point the spatial evolution of the energy transfer grows unlimited but an oscillatory evolution still takes place; and at the symmetry breaking point the phenomenon of mode trapping does not occur in this nonparaxial regime (previously seen in PT -symmetric optical lattices in the paraxial regime). For the complex lattice, all these regimes share the common features: existence of a preferable mode for which the energy is transferred and a spatial evolution of this transfer in a nonreciprocal fashion, some of the characteristics very well known of PT -symmetric optical systems. / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A evolução espacial de um par de modos de Bragg ressonantes através de um meio descrito por uma permissividade elétrica relativa PT -simétrica é completamente investigada. Usando o modelo de duas ondas, soluções analíticas para as equações de Maxwell são derivadas no regime não-paraxial a fim de investigar a transferência de energia entre esses modos de Bragg para uma rede ótica Hermitiana bem como para uma rede ótica complexa e também estudar a evolução espacial da parte real do campo elétrico que se propaga através desse meio. Três regimes definidos pela quebra de simetria são discutidos: abaixo, acima e no ponto de quebra de simetria. Estes regimes são determinados pela existência de quatro autovalores complexos distintos abaixo da quebra de simetria, que colidem e coalescem num par de autovalores valores complexos duplamente degenerados no ponto de quebra de simetria. Acima do ponto de quebra, quatro autovalores complexos distintos voltam a existir e agora cada um possui uma parte real não-nula. No caso Hermitiano, é demonstrado que uma transferência de energia completamente recíproca entre o par de modos de Bragg, numa maneira similiar ao efeito Pendellösung conhecido da difração de raios X por cristais, ocorre. Quando a rede ótica é complexa, a dinâmica da transferência de energia é completamente diferente do caso Hermitiano: abaixo do ponto de quebra de simetria existe um comportamento oscilatório do tipo batimento muito não-recíproco para a transferência de energia entre os modos de Bragg; acima do ponto de quebra de simetria a evolução espacial da transferência de energia cresce ilimitadamente mas um evolução oscilatória ainda ocorre; no ponto de quebra o fenômeno do aprisionamento de modo não ocorre nesse regime não-paraxial (anteriormente visto em redes óticas PT -simétricas no regime paraxial). Para a rede ótica complexa, todos estes regimes compartilham características em comum: existência de um modo preferencial para o qual a energia é transferida e uma evolução espacial dessa transferência de maneira não-recíproca, algumas das características muito bem conhecidas de sistemas óticos PT simétricos.
|
Page generated in 0.226 seconds