• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 3
  • Tagged with
  • 13
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of synergistic systems, involving 2-chlorothioxanthone, for the photosensitised polymerisation of acrylate monomers

Bate, N. J. January 1984 (has links)
No description available.
2

Novel organic materials for electroluminescent display devices

Richards, Gary J. January 2001 (has links)
No description available.
3

Synthesis and photocuring activity of novel initiator bound UV curable monomers and prepolymers

Marin, Mihaela Christina January 2001 (has links)
No description available.
4

Entwicklung eines photochemisch vernetzbaren, methacrylat- und isocyanathaltigen Knochenklebers mit degradierbaren keramischen Füllstoffen / Development of a photochemically crosslinked, methacrylate- and isocyanate containing bone glue with degradable ceramic fillers

Rücker, Anja January 2017 (has links) (PDF)
Bisher getestete Knochenkleber zeigen häufig geringe Klebeeigenschaften auf Knochen bei Zutritt von Feuchtigkeit. Gegenstand dieser Arbeit war es, die Haftfähigkeit im feuchten Milieu zu verbessern. Hierfür wurde der Einfluss sternförmiger, mit Isocyanaten funktionalisierter Poly(ethylenglykol) Moleküle (NCO-sP(EO-stat-PO)) auf die Klebefestigkeit und Alterungsbeständigkeit einer photopolymerisierbaren Poly(ethylenglykol)dimethacrylat-Basis (PEGDMA) untersucht. Die Polymerisation mittels energiereicher Strahlung erlaubt hohe Reaktionsraten bei Körpertemperatur sowie zeitliche und örtliche Kontrolle über die Polymerisationsreaktion. Durch den Zusatz degradierbarer, keramischer Füllstoffe auf Calciumsulfat- und Magnesiumphosphat-Basis in die Matrix sollten durch Lösungsprozesse Poren geschaffen werden. Diese könnten das Einwachsen neuer Knochensubstanz in das ausgehärtete Material ermöglichen. Die Veränderungen der kristallinen Strukturen wurden mittels Röntgendiffraktometrie beobachtet. Zudem wurden die Proben infrarotspektroskopisch und mikroskopisch untersucht. Die Klebefestigkeit auf kortikalem Rinderknochen im Abscherversuch ebenso wie die Biegefestigkeit vor und nach Lagerung in feuchter Umgebung wurde unter Variation des NCO-sP(EO-stat-PO)-Gehaltes ermittelt. Anschließend sollten die mikroskopische Analyse und energiedispersive Röntgenspektrometrie (EDX) Aufschluss über das Bruchverhalten des Materials beim Klebeversuch geben. Es konnte gezeigt werden, dass durch die Zugabe von 20 bis 40 Gew.-% NCO sP(EO-stat-PO) zur Matrix die Klebefestigkeit auf Knochen von initial etwa 0,15 bis 0,2 MPa auf etwa 0,3 bis 0,5 MPa gesteigert werden kann. Während alle Referenzproben ihre Haftung an Knochen innerhalb von weniger als 24 Stunden verloren, zeigten Proben mit NCO sP(EO-stat-PO) auch nach 7-tägiger Lagerung noch Festigkeiten von 0,18 bis 0,25 MPa. Die höchste Festigkeit nach 7 Tagen war bei Proben mit dem Füllstoff Newberyit und einem NCO-sP(EO-stat-PO)-Anteil von 40 Gew.-% zu verzeichnen. Diese Proben wiesen auch in der mikroskopischen Analyse und im EDX eindeutig ein rein kohäsives Versagen auf. 20%-ige Proben zeigten zumindest in geringem Maße auch adhäsives Versagen. Die 3-Punkt Biegefestigkeit lag initial bei 3,5 bis 5,5 MPa. Durch die Lagerung in PBS sank die Festigkeit auf ~1 MPa. Die Zugabe von NCO-sP(EO-stat-PO) und die Art des eingesetzten Füllstoffes hatten kaum einen Einfluss auf diese. / Bone adhesives often show a significant loss in adhesive strength to bone when used in a wet environment. The aim of this work was to improve the adhesion to bone under wet conditions by addition of star-shaped, isocyanate-functionalized poly (ethylene glycol) molecules (NCO-sP (EO-stat-PO)) and to investigate the influence on bond strength and aging resistance of a photopolymerizable poly (ethylene glycol) dimethacrylate base (PEGDMA). Polymerization by high-energy radiation allows high reaction rates at body temperature as well as temporal and local control over the polymerization reaction. The addition of degradable, ceramic calcium sulfate and magnesium phosphate based fillers into the matrix was supposed to create pores through solution processes. These could allow the ingrowth of new bone into the cured material. The changes of the crystalline structures were observed by X-ray diffractometry. In addition, the samples were examined microscopically and by infrared spectroscopy. The adhesive strength on bovine cortical bone in shear tests as well as the flexural strength before and after storage in a wet environment was determined by varying the NCO-sP (EO-stat-PO) content. Subsequently, the microscopic analysis and energy dispersive X-ray spectrometry (EDX) should provide information about the failure mode of the material. It could be shown that by the addition of 20 to 40 wt .-% NCO sP (EO stat PO) to the matrix, the adhesive strength to bone can be increased from initially about 0.15 to 0.2 MPa to about 0.3 to 0,5 MPa. While all reference samples lost adhesion to bone within less than 24 hours, samples containing NCO sP (EO-stat-PO) still showed bonding strengths of 0.18 to 0.25 MPa after 7 days of storage. The highest bonding strength after 7 days was observed in samples with newberyit fillers and an NCO-sP (EO-stat-PO) content of 40 wt .-%. These samples also clearly showed cohesive failure in microscopic analysis and EDX, while samples containing 20% wt.-% showed at least slight adhesive failure. Initially tested, the 3-point bending strength was about 3.5 to 5.5 MPa. After storage in PBS, the strength decreased to ~ 1 MPa. The addition of NCO-sP (EO-stat-PO) and the type of filler used had only little effect on strength loss.
5

Modifications de surfaces et intégration de MEMS pour les laboratoires sur puce

Attia, Rafaele 01 December 2008 (has links) (PDF)
Cette thèse présente diverses applications de la photopolymérisation radicalaire dans les puces microfluidiques. Dans un premier temps, nous décrirons l'importance des modifications de surfaces des puces microfluidiques afin de conférer à la surface un caractère hydrophile et neutre. Nous présenterons une modification de surface par photopolymérisation radicalaire in-situ de polyacrylamide pour des puces d'une part en PDMS, sur lequel la longévité des modifications de surface est difficile à obtenir, et d'autre part sur le COC qui étant inerte chimiquement, est difficilement modifiable. Dans une autre application la photopolymérisation sera effectuée en volume et nous permettra d'intégrer très simplement des MEMS, in-situ dans le microcanal. L'intégration de réseaux de colonnes fonctionnalisées avec des protéines sera présentée, ainsi que l'implémentation de deux capteurs de flux. Un capteur de flux basé sur l'élongation d'une structure déformable s'est montré très performant en terme de large gamme de mesures, de sensibilité et de reproductibilité. Le deuxième capteur de flux est basé sur la rotation d'un objet autour d'un axe. Sa mesure est indépendante de la viscosité du fluide malgré ses moindres performances.
6

Amorphous, multi phase polymer network systems with shape memory properties by photopolymerization

Choi, Nok-young. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2002--Aachen.
7

Untersuchungen zu photovernetzbaren und biokompatiblen (Hybrid-)Polymeren / Investigations of photo-curable and biocompatible (hybrid) polymers

Beyer, Matthias January 2013 (has links) (PDF)
Die Arbeit beschäftigte sich mit Untersuchungen zu photovernetzbaren und –strukturierbaren (Hybrid-)Polymeren, um Grundlagen für die Herstellung von Trägergerüststrukturen (Scaffolds) auf Basis photovernetzbarer (Hybrid-)Polymere zu legen und damit in der Zukunft patientenindividuelle medizinische Werkstücke, die beliebig durch Zwei-Photonen-Absorptionsprozesse in drei Dimensionen strukturierbar sind, für die Regenerative Medizin zu ermöglichen. Dafür wurden zunächst die zum Teil in der Literatur unbekannten unterschiedlichen Monomere Acr-1, MAcr-2, Acr-3, MAcr-4 und DiMAcr-5 synthetisiert. Dabei handelt es sich um einfache und gut vergleichbare organische (Meth-)Acrylat-Monomere, die mono- bzw. difunktional in ihren photochemisch reaktiven Gruppen sind. Die synthetisierten organischen Monomere Acr-3, MAcr-4 und DiMAcr-5 wurden in verschiedenen Verhältnissen mit dem anorganisch-organischen Methacrylat-basierten Hybridpolymers ORMOCER® I kombiniert. Die (Co-)Polymerisation der unterschiedlichen Formulierungen wurde in situ mittels UV-DSC-Untersuchung verfolgt. Dabei wurden bei diesen Untersuchungen zum Teil deutliche Unterschiede im Reaktionsverlauf der einzelnen Materialformulierungen festgestellt. So konnten zum Beispiel bei Monomermischungen ein schnellerer Polymerisationsverlauf sowie eine höhere maximale Polymerisationsrate als bei den jeweiligen Einzelkomponenten beobachtet werden (Synergieeffekt). Diese Beobachtungen wurden anhand der Monomerstruktur (unterschiedliche Diffusionsfähigkeiten im vergelten, aber noch nicht erstarrten System durch Mono- bzw. Difunktionalität) und der Art der funktionellen Gruppe (Acrylat- bzw. Methacrylatgruppe) erklärt. Weiterhin wurden der Einfluss des verwendeten Photoinitiators und dessen eingesetzte Konzentration auf die photochemisch-induzierte Copolymerisation eines ausgewählten Systems beleuchtet. Dazu wurden verschiedene Einflussfaktoren der Initiation betrachtet. Neben der eingesetzten Initiatorkonzentration spielen auch die Absorptionseigenschaften, die umgebende Matrix und die Initiatoreffizienz eine große Rolle für den Reaktionsverlauf der photochemischen Vernetzung. Weiterhin wurden die Photoinitiatoren in unterschiedlichen Konzentrationen eingesetzt, um die dadurch induzierte Veränderung des Reaktionsverlaufs zu betrachten. Aus den Einflüssen auf die Reaktionsverläufe konnte geschlossen werden, dass diese sowie auch die maximale Polymerisationsrate RP,max und damit die Reaktionskinetik nicht in jedem Fall linear mit der Initiatorkonzentration zunehmen muss. Erste generelle 2PP-Strukturierungen wurden zudem an ausgewählten Material-formulierungen durchgeführt. Dabei zeigte sich, dass alle Formulierungen bei bestimmten Parameterkombinationen aus Laserleistung und Schreibgeschwindigkeit mittels 2PP strukturiert werden konnten. Außerdem wurden bei den verschiedenen Formulierungen bei gleicher Parameterkombination unterschiedliche Strukturbreiten und damit erstmalig unterschiedliche Strukturvolumina beobachtet. Diese unterschiedlichen Volumina konnten erstmalig mit den unterschiedlichen Reaktionsverläufen der Materialformulierungen korreliert werden. Dabei zeigte sich, dass das chemische Wechselwirkungsvolumen von der Funktionalität der eingesetzten Materialkomponenten abhängig ist, da davon der Grad an Quervernetzung abhängt, der bestimmt, ob ausreichend vernetzte Voxel und Strukturen entstehen, die durch einen Entwicklungsschritt nicht mehr entfernt werden. Im zweiten Teil der Arbeit wurde ein biokompatibles und photostrukturierbares Hybridpolymer (RENACER® MB-I) entwickelt, welches mittels 2PP strukturiert werden konnte, was anhand kleiner wie auch großer Scaffolds mit dem Material demonstriert wurde. Dazu wurde das kommerziell erhältliche Alkoxysilan-Molekül O-(Methacryloxyethyl)-N-(triethoxysilylpropyl)urethan als Precursor verwendet. Durch eine bewusst unvollständige Hydrolyse- und Kondensationsreaktion konnte aus dem Precursorsilan ein Hybridpolymerharz hergestellt werden, welches anorganisch vorverknüpft war. Weiterhin wies es sowohl als Volumenpolymer, als auch in Form von Scaffold-Strukturen eine sehr gute Biokompatibilität auf. Um zu untersuchen, ob die im Hybridpolymer enthaltenen prinzipiell degradierbaren Gruppen unter physiologischen Bedingungen tatsächlich degradieren und Teile aus dem Polymerverband herausgelöst werden können, wurde ein selbstentwickeltes Verfahren für stationäre Degradations-untersuchungen in phosphat-gepufferter Saline (PBS, pH = 7,4) verwendet. Die durch die photochemische Polymerisation neu entstandenen Ketten besaßen ihrer Natur gemäß keine hydrolysierbaren Einheiten, weshalb das Hybridpolymer nicht vollständig degradieren kann. Es konnte jedoch ein prinzipieller Zugang zu Gerüstträgerstrukturen auf Basis photovernetzbarer Polymere für die Regenerative Medizin geschaffen werden. / The objective was the investigation of photo-curable and patternable (hybrid) polymers for applications in regenerative medicine, in order to explore basic principles for scaffold fabrication by two-photon polymerization. This would enable patient-individual medical implants. As model systems for subsequent investigations, the monomers Acr-1, MAcr-2, Acr-3, MAcr-4, and DiMAcr-5 were synthesized. These compounds are well comparable organic (meth)acrylate monomers with a functionality of one and two, respectively. The monomers Acr-3, MAcr-4, and DiMAcr-5 were combined with a well-known methacrylate-based inorganic-organic hybrid polymer ORMOCER® I in different molar ratios. After preparation of the monomers and their formulations with ORMOCER® I introducing defined amounts of photoinitiator Irgacure® 369 into the material systems, the materials’ reaction was monitored in situ by photo-DSC investigations. In particular, the effect of the different monomer ratios on the copolymerization behavior was studied in more detail. A higher maximum polymerization rate and, therewith, a higher reaction speed was found for all formulations of monomer mixtures in contrast to the corresponding individual monomers (synergy effect). Moreover, by comparing the various organic monomers, considerable differences could be identified in between acrylates and methacrylates as well as for the mono- and difunctional species. These effects were explained by means of the type of their photochemically organically cross-linkable functional groups and thus their resulting reactivity as well as by the monomer structure and functionality itself, resulting in different diffusion abilities of mono-, oligo- and polymeric species within gelled systems. Furthermore, the influence of several photoinitiators and the initiator concentration on the photochemically induced copolymerization was investigated. Besides the initiator concentration, also the initiators’ absorption properties, the resin matrix and the initiators’ efficiency play an important role for the reaction profile of the photochemical cross-linking. All different photoinitiators were introduced into the model system in three different concentrations to explore the induced alterations on the reaction profile. For some of the investigated initiators, the maximum polymerization rate RP,max and, therewith, the overall reaction kinetics increased with increasing photoinitiator concentration, but for other initiators, the maximum polymerization rate RP,max was lowered at increased initiator concentrations. Thus, a general relationship between the photoinitiator concentration and the maximum polymerization rate RP,max could not be identified. First structures were generated out of selected mixtures by two-photon polymerization in order to demonstrate the novel materials’ ability of being patterned in three dimensions. Three dimensional structures were generated with specific parameter combinations of laser power and writing speed, whereas each parameter set corresponds to an individual exposure dose deposited in the materials’ volume. In particular, different structure widths were observed for different material formulations fabricated with the same parameter sets. Thus, it was possible for the first time to experimentally observe different chemical interaction volumes. These interaction volumes were correlated to the different reaction profiles of the material formulations, which were received via 1PP photo-DSC measurements. It was shown that the structure volume depends on the functionality of the employed monomers, because their degree of cross-linking depends on their functionality. The degree of cross-linking which results upon polymerization determines, whether a structure maintains stable during the subsequent development process. In the second part of this work, a biocompatible and photo-patternable hybrid material was developed. Commercially available O-(methacryloxyethyl)-N-(triethoxysilylpropyl)-urethane was chosen for an intentional incomplete hydrolysis and condensation reaction in order to receive a RENACER® resin, which includes functional groups for subsequent organic cross-linking. This material showed a very good patterning performance, which was demonstrated by a series of structures and scaffolds. The material yields a good biocompatibility. In order to investigate, whether the hydrolysable functional groups within the hybrid polymer actually degrade under physiological conditions, a procedure routine for stationary degradation studies in phosphate-buffered saline (PBS) was developed. The carbon chain generated through photochemical cross-linking, has no hydrolyzable groups and naturally cannot be degraded, resulting in a hybrid polymer which is not completely degradable. However, a principal access to scaffolds for regenerative medicine on the basis of photo-curable polymers was accomplished which was the purpose of this work.
8

Biochip design based on tailored ethylene glycols

Larsson (Kaiser), Andréas January 2007 (has links)
Studies of biomolecular interactions are of interest for several reasons. Beside basic research, the knowledge gained from such studies is also very valuable in for example drug target identification. Medical care is another area where biomolecules may be used as biomarkers to aid physicians in making correct diagnosis. In addition, the highly specific interactions between antibodies and almost any substance opens up the possibilities to design systems for detection of trace amounts of both biological and non-biological substances within environmental restoration, law enforcement, correctional care, customs service and national security. A biochip, which contains a biologically active material, offers a means of monitoring the molecular interactions in the above applications in a sensitive and specific manner. The biochip is a key component of a biosensor, which also includes components for transforming the interaction events into a human-readable signal. This thesis describes the use of poly(ethylene glycol) (PEG) in biochip design. Two different approaches are presented, the first based on ethylene glycol (EG)-containing alkyl thiol self-assembled monolayers (SAMs) on flat gold and the second on photo-induced graft copolymerisation of PEG-containing methacrylate monomers onto various substrates. The former is a two dimensional system where EG-terminated thiols are mixed with similar thiols presenting tail groups that mimic the explosive substance 2,4,6-trinitrotoluene (TNT). In an immunoassay, the detection limit for TNT was determined to fall in the range 1-10 µg/L. In the second approach, a branched three dimensional biosensor matrix (hydrogel) is proposed. The carboxymethylated (CM) dextran matrix, which is commonly used within the biosensing community, is not always ideal for studies of biointeractions, due to the non-specific binding frequently encountered in work with complex biological solutions and various proteins. To employ PEG, which displays a low non-specific binding of such species, is therefore an interesting option worth investigating. The use of a branched graft polymerised PEG matrix in biosensor applications is novel as compared to previous reports which have focused on linear PEG chains. The latter approach provides, at maximum, one functional group, per surface anchoring point, for immobilisation of sensor elements. Thus, it has the inherited disadvantage that it limits the number of available immobilisation sites. The present PEG matrix contains a large number of functional groups, for immobilisation of sensor elements, per grafting site and offers the potential of improved response upon binding to the analyte as demonstrated in a series of successful sensor experiments. Furthermore, the nature of the process enables easy preparation of matrix patterns and gradients. In a PEG matrix gradient, protein permeability is studied and the capabilities of immobilising proteins are demonstrated. By combining the patterning technique with different monomers in a two-step process, an inert platform, lacking chemical attachment sites, is provided with arrays of spots (with immobilisation capabilities), which are conveniently addressed via microdispensing and used for biosensor purposes. The EG-terminated thiols present another means of generating such inert platforms, a route which is also investigated. To further explore the sensor quality of these spots, the concepts of patterning and gradient formation are combined and studied. / Det är intressant att studera biomolekylära interaktioner av många anledningar. För att kunna bedriva framgångsrik läkemedelsutveckling är det oerhört viktigt att känna till hur olika molekyler samverkar i människokroppen. Inom sjukvården kan biomolekyler användas som biomarkörer, då närvaro av dem eller förändringar av deras koncentrationer är kopplade till sjukdomstillstånd, och därmed hjälper läkaren att ställa rätt diagnos. Dessutom kan de mycket specifika interaktionerna mellan antikroppar och (i princip) valfri substans användas för detektion av spårämnen vid miljösaneringsarbete, gränskontroller, polisarbete, fängelser och arbete med nationell säkerhet. Den här avhandlingen beskriver hur polymeren polyetylenglykol (PEG) kan användas vid design av biochip. Ett biochip är en liten anordning, som kan användas för att detektera specifika molekyler med hjälp av en biologisk interaktion. Traditionellt har PEG använts inom biomaterialsektorn, men återfinns även i hygienartiklar som tvål och tandkräm. Ett annat användningsområde är konservering av bärgade träskepp och i en del litiumjonbatterier ingår PEG som en komponent. Dessutom pågår utveckling av PEG-innehållande skyddsvästar. I det här arbetet används PEG framför allt på grund av sin förmåga att minimera ospecifik inbindning av proteiner, som utgör en stor del av gruppen biomolekyler, till ytor på biochip. Två olika typer av ytbeläggningar, som innehåller den här polymeren, har använts. Den första typen ger mycket tunna (~0.000003 mm), tvådimensionella filmer medan den andra ger en något tjockare (~0.00005 mm), tredimensionell struktur (matris). De tvådimensionella filmerna har använts för att utveckla en sprängämnesdetektor med mycket hög känslighet (detektionsgräns mellan 1-10 ppb). En viktig beståndsdel i detta system är antikroppar riktade mot sprängämnet trinitrotoluen (TNT). Den tredimensionella matrisen är mer generell och kan användas för att studera många olika molekylära interaktioner. Tillverkningsmetoden av matrisen är baserad på belysning med ultraviolett ljus och är därmed lämpad för att skapa mönstrade ytor. Genom att blockera delar av ljusflödet begränsas tillväxten av matrisen till de belysta delarna. På så sätt har bland annat så kallade mikro-arrayer, bestående av mikrometerstora (tusendels millimeter) strukturer i ett regelbundet mönster, tillverkats. Tekniken tillåter även tillverkning av gradienter, där matrisens tjocklek varierar längs med provet, genom att belysa olika delar av provytan olika länge. Genom att undersöka dessa gradienter har information om matrisens genomsläpplighet för proteiner kunnat extraheras. Gradientkonceptet har även kombinerats med mikro-arraytillverkningen och gett möjlighet att studera interaktioner mellan flera olika modellproteiner och deras motsvarande antikroppar i olika tjocka matriser på en och samma yta. Det finns ett stort antal sätt att utnyttja interaktionerna mellan olika molekyler på ett biochip. Ett tilltalande tillvägagångssätt är exempelvis att i en mikro-array binda in olika molekyler som kan fånga kliniskt intressanta biomolekyler, i syfte att skapa en hälsoprofil. Ett sådant biochip skulle ge möjlighet att parallellt detektera eller bestämma koncentrationen av ett stort antal biomolekyler i till exempel en droppe blod. På så sätt kan en diagnos snabbt ställas, kanske till och med utan att patienten behöver uppsöka sjukvården. Den utvecklade PEG-matrisen har god potential att fungera i en sådan applikation.
9

Conception et élaboration de matériaux à biodégradabilité contrôlée pour la médecine régénérative / Design and development of materials with controlled biodegradability for regenerative medicine

Goczkowski, Mathieu 18 December 2017 (has links)
Les gels de fibrine présentent un fort intérêt en médecine régénérative, puisqu’ils miment la matrice temporaire créée lors de la cicatrisation. Cependant, quand préparés à concentration physiologique, ils ne sont pas manipulables, ni conservables à sec. Pour contrer ces désavantages, ils peuvent être associés à un autre réseau de polymères, dans une architecture de Réseaux Interpénétrés de Polymères (RIP). Cette approche a été utilisée pour associer à un réseau de fibrine, un coréseau semi-synthétique d’albumine de sérum bovin (BSA) et de poly(oxyde d’éthylène) (POE), obtenu par photopolymérisation de BSA et PEG modifiés avec des fonctions méthacrylate (BSAm, PEGDM).Il a été démontré par des tests ex vivo et in vitro que ces matériaux ont de multiples applications potentielles, puisqu’ils supportent à leur surface, la croissance de nombreux types cellulaires. De plus, il a été observé que ces matériaux peuvent servir comme vecteurs pour la délivrance de molécules d’intérêt thérapeutique.La technologie a d’ailleurs été optimisée, en utilisant non plus des précurseurs modifiés avec des fonctions méthacrylate, mais acrylate. Cette modification a permis de réduire la toxicité du procédé de synthèse, tout en conservant les performances des matériaux. Il a également été démontré que divers matériaux optimisés ont des mécanismes de dégradation différents, et contrôlables par leur formulation initiale.Enfin, deux nouvelles familles de RIPs à base de fibrine ont été développées, en associant à un réseau de fibrine, un autre réseau de protéine, la fibroïne de soie. Des RIPs parfaitement manipulables ont été obtenus, supportant à leur surface la culture de fibroblastes. Ces matériaux sont donc prometteurs pour l’ingénierie tissulaire de la peau et d’autres applications. / Fibrin gels are of interest in regenerative medicine, as they mimic the provisory matrix synthesized during wound healing process. However, when prepared at physiologic concentration, these gels cannot be handled, nor stocked in dry state. To face these drawbacks, they can be associated with another polymer network, in an Interpenetrating Polymer Network (IPN). This strategy was used to associate to a fibrin network, a semi-synthetic conetwork composed of bovine serum albumin (BSA) and poly(ethylene oxide) (PEO), obtained by photopolymerization of methacrylate-modified BSA and PEG.It was demonstrated through ex vivo and in in vitro experiments that these materials have numerous potential applications, as they support on their surface, the culture of numerous cell types. Moreover, it was observed that they may be used as drug carrier for drug release applications.Moreover, the technology was optimized by modifying the methacrylate functions on the precursors for acrylate functions. This modification allowed to reduce the toxicity of the process, while preserving materials performances. It was also demonstrated that these optimized materials have different degradation mechanisms, which are controllable by their initial formulation.Finally, 2 new groups of fibrin-based IPNs were developed, by associating to a fibrin network, another protein network, the silk fibroin. Perfectly handable IPNs were obtained, which support on their surface the culture of fibroblasts. These materials are then very promising for skin tissue engineering, and most likely other applications.
10

Neuartige ORMOCER®-basierte Materialsysteme und deren Formgebung mittels Digital Light Processing für hochwertige dentale Versorgungen / Novel ORMOCER®-based material systems and their shaping by means of Digital Light Processing for high-quality dental restorations

Kolb, Carina January 2022 (has links) (PDF)
Im Rahmen der vorliegenden Dissertation wurden ORMOCER®-basierte Materialsysteme für dentale Versorgungen entwickelt, die additiv mittels Digital Light Processing (DLP) verarbeitbar sind und ein hochwertiges, auf die vorgesehene Zielanwendung abgestimmtes Eigenschaftsprofil besitzen. Zunächst wurden grundlegende Untersuchungen zum DLP-Druck des Harzsystems und einfachen Kompositen durchgeführt, um auftretende Herausforderungen zu identifizieren und die weitere Vorgehensweise festzulegen. Ausgehend davon konzentrierte sich die Arbeit neben der Vermeidung der klebrigen Sauerstoffinhibierungsschicht auf der Bauteiloberfläche einerseits darauf, die Maßhaltigkeit bei DLP-gedruckten Bauteilen mit überhängenden Strukturen zu steigern. Insbesondere wurde das Augenmerk hier auf die Verwendung von organischen Lichtabsorbern zur Realisierung von hochtransluzenten Harz-basierten Bauteilen gelegt. Andererseits lag ein weiterer Schwerpunkt der Arbeit auf der Entwicklung von DLP-druckbaren Kompositen mit hoher Transluzenz. Die dafür nötige Brechzahlanpassung von Harzsystem und Füllstoff wurde zum einen durch die Synthese neuer, höherbrechender Harzsysteme und zum anderen durch die Verwendung hochbrechender ZrO2-Nanopartikel realisiert. Die resultierenden hochtransluzenten Komposite wurden umfassend mechanisch charakterisiert sowie erfolgreich DLP-gedruckt. / In this work, ORMOCER®-based material systems for dental restorations were developed which can be additively processed by digital light processing (DLP) and have a high-quality property profile tailored to the intended target application. Initially, basic investigations were carried out on the DLP printing of the resin system and simple composites in order to identify any challenges that arose and to determine the further course of action. Based on this, in addition to avoiding the sticky oxygen inhibition layer on the part surface, the work focused on the one hand on increasing the dimensional accuracy of DLP-printed parts with overhanging structures. In particular, attention was paid here to the use of organic light absorbers to realize highly translucent resin-based parts. On the other hand, another focus of the work was on the development of DLP printable composites with high translucency. The necessary refractive index adaption of resin system and filler was realized on the one hand by synthesizing new, higher refractive index resin systems and on the other hand by using highly refractive ZrO2 nanoparticles. The resulting highly translucent composites were extensively characterized mechanically and successfully DLP-printed.

Page generated in 0.1222 seconds