• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nano-scale Thermal Property Prediction by Molecular Dynamics Simulation with Experimental Validation

Horne, Kyle S. 01 May 2014 (has links)
Quantum cascade laser (QCL) diodes have potential applications in many areas including emissions analysis and explosives detection, but like many solid-state devices they suer from degraded performance at higher temperatures. To alleviate this drawback, the thermal properties of the QCL diodes must be better understood. Using molecular dynamics (MD) and photothermal radiometry (PTR), the thermal conductivity of a representative QCL diode is computed and measured respectively. The MD results demonstrate that size eects are present in the simulated systems, but if these are accounted for by normalization to experimental results the thermal conductivity of the QCL can be reasonably obtained. The cross-plane conductivity is found to be in the range of 1.8 to 4.3 W=m K, while the in-plane results are in the range of 3.7 to 4.0 W=m K. These values compare well with experimental results from the literature for both QCL materials and for AlInAs and GaInAs, which the QCL is composed of. The cross-plane conductivity results are lower than those of either AlInAs or GaInAs, which demonstrates the phonon scattering at the interfaces. The in-plane results are between AlInAs and GaInAs, which is to be expected. The PTR results are less concrete, as there seem to be heat transfer eects active in the samples which are not included in the models used to t the frequency scans. These effects are not 2D heat transfer artifacts nor are they the result of volumetric absorption. It is possible that they are the results of plasmon induction, but this is only supposition. As the data stand, the PTR and MD results are within an order of magnitude of each other and follow reasonable trends, which suggests that both results are not too far o from reality. While the experimental results are not entirely conclusive, the simulations and experiments corroborate each other suciently to warrant further investigation using these techniques. Additionally, the simulations present sucient internal consistency so as to be useful for thermal property investigation independent of the PTR results.
2

In Vitro Examination of Secondary Caries Using Infrared Photothermal Radiometry and Modulated Luminescence

Kim, Jungho 21 March 2012 (has links)
Dental secondary caries is the carious lesion developed around existing restoration margins. Many new technologies have been developed for caries detection purposes, but their performance is unsatisfactory for the specific purpose of secondary caries diagnosis. Therefore, the development of a novel technology to detect secondary caries has been highly necessary. The objective of this research was to investigate the ability of photothermal radiometry and modulated luminescence to detect secondary caries: wall lesions and outer lesions. Changes in experimental PTR-LUM signals due to sequential demineralization on vertical walls of sectioned tooth samples were investigated. Another study was conducted to investigate how two different types of secondary caries, wall lesions and outer lesions, affect the PTR-LUM signals. The studies demonstrated that PTR-LUM is sensitive to progressive demineralization and remineralization on vertical walls of sectioned tooth samples, as well as to the presence of wall lesions and outer lesions developed around composite restorations.
3

In Vitro Examination of Secondary Caries Using Infrared Photothermal Radiometry and Modulated Luminescence

Kim, Jungho 21 March 2012 (has links)
Dental secondary caries is the carious lesion developed around existing restoration margins. Many new technologies have been developed for caries detection purposes, but their performance is unsatisfactory for the specific purpose of secondary caries diagnosis. Therefore, the development of a novel technology to detect secondary caries has been highly necessary. The objective of this research was to investigate the ability of photothermal radiometry and modulated luminescence to detect secondary caries: wall lesions and outer lesions. Changes in experimental PTR-LUM signals due to sequential demineralization on vertical walls of sectioned tooth samples were investigated. Another study was conducted to investigate how two different types of secondary caries, wall lesions and outer lesions, affect the PTR-LUM signals. The studies demonstrated that PTR-LUM is sensitive to progressive demineralization and remineralization on vertical walls of sectioned tooth samples, as well as to the presence of wall lesions and outer lesions developed around composite restorations.
4

Nonlinear Photothermal Radiometry and its Applications to Pyrometry and Thermal Property Measurements

Fleming, Austin Drew 01 May 2017 (has links)
Accurate temperature and thermal property measurements are critical for the modeling and prediction of heat transfer. In many industries thermal management is a limiting factor of performance, and rely on advanced modeling techniques to develop and design methods to better manage thermal energy. This study expands the thermal property and pyrometry measurement capabilities by developing three new techniques based on thermal emission’s nonlinear dependence on temperature.
5

Development of Frequency and Phase Modulated Thermal-wave Methodologies for Materials Non-destructive Evaluation and Thermophotonic Imaging of Turbid Media

Tabatabaei, Nima 31 August 2012 (has links)
In frequency-domain photothermal radiometry (FD-PTR) a low-power intensity-modulated optical excitation generates thermal-wave field inside the sample and the subsequent infrared radiation from the sample is analyzed to detect material’s inhomogeneities. The non-contact nature of FD-PTR makes it very suitable for non-destructive evaluation of broad range of materials. Moreover, the methodology is based on intrinsic contrast of light absorption which can be used as a diagnostic tool for inspection of malignancy in biological tissues. Nevertheless, the bottom line is that the physics of heat diffusion allows for a highly damped and dispersive propagation of thermal-waves. As a result, the current FD-PTR modalities suffer from limited inspection depth and poor axial/depth resolution. The main objective of this thesis is to show that using alternative types of modulation schemes (such as linear frequency modulation and binary phase coding) and radar matched filter signal processing, one can obtain localized responses from inherently diffuse thermal wave fields. In this thesis, the photothermal responses of turbid, transparent, and opaque media to linear frequency modulated and binary phase coded excitations are analytically derived. Theoretical simulations suggest that matched-filtering in diffusion-wave field acts as constructive interferometry, localizing the energy of the long-duty excitation under a narrow peak and allowing one to construct depth resolved images. The developed technique is the diffusion equivalent of optical coherence tomography and is named thermal coherence tomography. It was found that the narrow-band binary phase coded matched filtering yields optimal depth resolution, while the broad-band linear frequency modulation can be used to quantify material properties through the multi-parameter fitting of the experimental data to the developed theory. Thermophotonic detection of early dental caries is discussed in detail as a potential diagnostic application of the proposed methodologies. The performance of the diagnostic system is verified through a controlled demineralization protocol as well as in teeth with natural caries.
6

Quantitative Evaluation of Simulated Enamel Demineralization and Remineralization Using Photothermal Radiometry and Modulated Luminescence

Hellen, Adam 26 July 2010 (has links)
Detection modalities that can evaluate the early stages of dental caries are indispensable. The purpose of this thesis is to evaluate the efficacy of photothermal radiometry and modulated luminescence (PTR-LUM) to non-destructively detect and quantify simulated enamel caries. Two experiments were performed based on the PTR-LUM detection mode: back-propagation or transmission-mode. Artificial demineralized lesions were created in human molars and a subset was further exposed to an artificial remineralizing solution. PTR-LUM frequency scans were performed periodically during de/re-mineralization treatments. PTR data was fitted to a theoretical model based on optical and thermal fluxes in enamel to extract opto-thermophysical parameters. Lesion validation was performed using transverse microradiography (TMR). Optical and thermal properties changed with the development and repair of the caries lesions while theory-derived thicknesses paralleled those determined microradiographically. These trends coupled with the uniqueness-of-fit of the generated parameters illustrate the efficacy of PTR- LUM to non-destructively detect and quantify de/re-mineralized lesions.
7

Quantitative Evaluation of Simulated Enamel Demineralization and Remineralization Using Photothermal Radiometry and Modulated Luminescence

Hellen, Adam 26 July 2010 (has links)
Detection modalities that can evaluate the early stages of dental caries are indispensable. The purpose of this thesis is to evaluate the efficacy of photothermal radiometry and modulated luminescence (PTR-LUM) to non-destructively detect and quantify simulated enamel caries. Two experiments were performed based on the PTR-LUM detection mode: back-propagation or transmission-mode. Artificial demineralized lesions were created in human molars and a subset was further exposed to an artificial remineralizing solution. PTR-LUM frequency scans were performed periodically during de/re-mineralization treatments. PTR data was fitted to a theoretical model based on optical and thermal fluxes in enamel to extract opto-thermophysical parameters. Lesion validation was performed using transverse microradiography (TMR). Optical and thermal properties changed with the development and repair of the caries lesions while theory-derived thicknesses paralleled those determined microradiographically. These trends coupled with the uniqueness-of-fit of the generated parameters illustrate the efficacy of PTR- LUM to non-destructively detect and quantify de/re-mineralized lesions.
8

Development of Frequency and Phase Modulated Thermal-wave Methodologies for Materials Non-destructive Evaluation and Thermophotonic Imaging of Turbid Media

Tabatabaei, Nima 31 August 2012 (has links)
In frequency-domain photothermal radiometry (FD-PTR) a low-power intensity-modulated optical excitation generates thermal-wave field inside the sample and the subsequent infrared radiation from the sample is analyzed to detect material’s inhomogeneities. The non-contact nature of FD-PTR makes it very suitable for non-destructive evaluation of broad range of materials. Moreover, the methodology is based on intrinsic contrast of light absorption which can be used as a diagnostic tool for inspection of malignancy in biological tissues. Nevertheless, the bottom line is that the physics of heat diffusion allows for a highly damped and dispersive propagation of thermal-waves. As a result, the current FD-PTR modalities suffer from limited inspection depth and poor axial/depth resolution. The main objective of this thesis is to show that using alternative types of modulation schemes (such as linear frequency modulation and binary phase coding) and radar matched filter signal processing, one can obtain localized responses from inherently diffuse thermal wave fields. In this thesis, the photothermal responses of turbid, transparent, and opaque media to linear frequency modulated and binary phase coded excitations are analytically derived. Theoretical simulations suggest that matched-filtering in diffusion-wave field acts as constructive interferometry, localizing the energy of the long-duty excitation under a narrow peak and allowing one to construct depth resolved images. The developed technique is the diffusion equivalent of optical coherence tomography and is named thermal coherence tomography. It was found that the narrow-band binary phase coded matched filtering yields optimal depth resolution, while the broad-band linear frequency modulation can be used to quantify material properties through the multi-parameter fitting of the experimental data to the developed theory. Thermophotonic detection of early dental caries is discussed in detail as a potential diagnostic application of the proposed methodologies. The performance of the diagnostic system is verified through a controlled demineralization protocol as well as in teeth with natural caries.
9

Pyrométrie et caractérisation thermophysique par radiométrie photothermique non linéaire / Nonlinear Photothermal Radiometry and its applications to pyrometry and thermal property measurements

Fleming, Austin 19 May 2017 (has links)
La radiométrie photothermique (PTR) est une technique standard qui mesure les propriétés thermiques en mesurant la réponse thermique d’un matériau à un échauffement optique. Le travail présenté ici développe la théorie PTR en prenant en compte la dépendance non linéaire des émissions thermiques par rapport à la température. Cette théorie PTR est explorée numériquement et expérimentalement dans ce travail en utilisant la dépendance non linéaire du rayonnement thermique en fonction de la température. Une technique de mesure de l'effusivité thermique et deux nouvelles techniques de pyrométrie sont développées et testées expérimentalement. La première technique de pyrométrie permet une mesure précise de l’augmentation de température lors d'une mesure PTR traditionnelle. Cela a de nombreuses applications lorsque l'échantillon est sensible à l’augmentation de température et peut être endommagé en raison d’une surchauffe. La deuxième technique de pyrométrie ne nécessite pas que l’émissivité soit connue, mesurée ou d’être basée sur l’hypothèse d’un corps gris. Cependant la mesure peut être fortement influencée par une erreur sur la bande passante des filtres optiques utilisés et elle est très sensible à toute non-linéarité dans le système de détection. À partir des résultats expérimentaux, des directives de conception sont fournies pour minimiser ces deux inconvénients. La troisième méthode développée permet une mesure directe et sans contact de l'effusivité thermique d'un matériau homogène. Ce type de mesure n'a encore jamais été réalisé avec d'autres techniques. Les résultats expérimentaux d'effusivité de cette technique montrent un excellent accord avec les valeurs de la littérature. / Photothermal radiometry (PTR) is a standard technique which measures thermal properties by measuring a materials thermal response due to optical heating. PTR measures the emitted thermal radiation from a sample to determine the thermal response. The work presented here further develops the PTR theory by including the nonlinear dependence of thermal emission with respect to temperature. This more advanced PTR theory is numerically and experimentally explored in this work. A thermal effusivity measurement technique and two new pyrometry techniques are developed and experimentally tested using the nonlinear dependence in the PTR theory. The first pyrometry technique allows for accurate temperature measurement during a traditional PTR measurement. This has many applications when the sample is sensitive to an increase in temperature and possibly damaged due to overheating. The second pyrometry technique does not require emissivity to be known, measured, or rely on a gray body assumption. The measurement can be influenced greatly by any error in the bandwidth of optical filters used in the measurement, and it is very sensitive to any nonlinearity in the detection system. From the experimental results, design guidelines are provided to minimize these two drawbacks of the technique for future exploration. The direct thermal effusivity measurement developed allows for a non-contact, direct measurement of thermal effusivity of a homogenous material. This type of measurement has not been achieved with any other technique. The experimental effusivity results from this technique show excellent agreement with literature values.
10

Uncertainty Qualification of Photothermal Radiometry Measurements Using Monte Carlo Simulation and Experimental Repeatability

Fleming, Austin 01 May 2014 (has links)
Photothermal Radiometry is a common thermal property measurement technique which is used to measure the properties of layered materials. Photothermal Radiometry uses a modulated laser to heat a sample, in which the thermal response can be used to determine the thermal properties of layers in the sample. The motivation for this work is to provide a better understanding of the accuracy and the repeatability of the Photothermal Radiometry measurement technique. Through this work the sensitivity of results to input uncertainties will be determined. Additionally, using numerical simulations the overall uncertainty on a theoretical measurement will be determined. The repeatability of Photothermal Radiometry measurements is tested with the use of a proton irradiated zirconium carbide sample. Due to the proton irradiation this sample contains two layers with a thermal resistance between the layers. This sample has been independently measured by three different researchers, in three different countries and the results are compared to determine the repeatability of Photothermal Radiometry measurements. Finally, from sensitivity and uncertainty analysis experimental procedures and suggestions are provided to reduce the uncertainty in experimentally measured results.

Page generated in 0.0549 seconds