• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 381
  • 65
  • 46
  • 45
  • 23
  • 15
  • 13
  • 11
  • 10
  • 7
  • 3
  • Tagged with
  • 753
  • 314
  • 224
  • 155
  • 143
  • 139
  • 103
  • 78
  • 77
  • 74
  • 72
  • 70
  • 68
  • 68
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Control of Dopant Type and Density in Colloidal Quantum Dot Films

Furukawa, Melissa 21 March 2012 (has links)
Colloidal quantum dots (CQDs) are an inexpensive and solution processable photovoltaic(PV) material reaching modest efficiencies of 6%. However, doping quantum dots still remains a challenge. This thesis explores the level of doping in lead sulfide (PbS)CQDs by surface ligands and bulk doping within the quantum dot lattice using metals. In light of the knowledge that oxygen creates traps on the surface of PbS CQDs, we have turned to the use of oxygen-free fabrication. We find that under a nitrogen environment, PbS CQD films are n-type and tunable in doping by use of halide ions. We show for the first time control over the doping density of n-type CQD films over a wide range. We also show the ability to fabricate p-type PbS films with high doping density that are compatible with n-type films. This compatibility enabled us to make the world’s first CQD homojunction PV device.
62

Plasmonic Enhancement for Colloidal Quantum Dot Photovoltaics

Paz-Soldan, Daniel Alexander 16 July 2013 (has links)
Colloidal quantum dots (CQD) are used in the fabrication of efficient, low-cost solar cells synthesized in and deposited from solution. Breakthroughs in CQD materials have led to a record efficiency of 7.0%. Looking forward, any path toward increasing efficiency must address the trade-off between short charge extraction lengths and long absorption lengths in the near-infrared spectral region. Here we exploit the localized surface plasmon resonance of metal nanoparticles to enhance absorption in CQD films. Finite-difference time-domain analysis directs our choice of plasmonic nanoparticles with minimal parasitic absorption and broadband response in the infrared. We find that gold nanoshells (NS) enhance absorption by up to 100% at λ = 820 nm by coupling of the plasmonic near-field to the surrounding CQD film. We engineer this enhancement for PbS CQD solar cells and observe a 13% improvement in short-circuit current and 11% enhancement in power conversion efficiency.
63

Control of Dopant Type and Density in Colloidal Quantum Dot Films

Furukawa, Melissa 21 March 2012 (has links)
Colloidal quantum dots (CQDs) are an inexpensive and solution processable photovoltaic(PV) material reaching modest efficiencies of 6%. However, doping quantum dots still remains a challenge. This thesis explores the level of doping in lead sulfide (PbS)CQDs by surface ligands and bulk doping within the quantum dot lattice using metals. In light of the knowledge that oxygen creates traps on the surface of PbS CQDs, we have turned to the use of oxygen-free fabrication. We find that under a nitrogen environment, PbS CQD films are n-type and tunable in doping by use of halide ions. We show for the first time control over the doping density of n-type CQD films over a wide range. We also show the ability to fabricate p-type PbS films with high doping density that are compatible with n-type films. This compatibility enabled us to make the world’s first CQD homojunction PV device.
64

Plasmonic Enhancement for Colloidal Quantum Dot Photovoltaics

Paz-Soldan, Daniel Alexander 16 July 2013 (has links)
Colloidal quantum dots (CQD) are used in the fabrication of efficient, low-cost solar cells synthesized in and deposited from solution. Breakthroughs in CQD materials have led to a record efficiency of 7.0%. Looking forward, any path toward increasing efficiency must address the trade-off between short charge extraction lengths and long absorption lengths in the near-infrared spectral region. Here we exploit the localized surface plasmon resonance of metal nanoparticles to enhance absorption in CQD films. Finite-difference time-domain analysis directs our choice of plasmonic nanoparticles with minimal parasitic absorption and broadband response in the infrared. We find that gold nanoshells (NS) enhance absorption by up to 100% at λ = 820 nm by coupling of the plasmonic near-field to the surrounding CQD film. We engineer this enhancement for PbS CQD solar cells and observe a 13% improvement in short-circuit current and 11% enhancement in power conversion efficiency.
65

Optical Characterization of Indium Gallium Nitride for Application in High-Efficiency Solar Photovoltaic Cells

MCLAUGHLIN, DIRK 30 September 2011 (has links)
The semiconductor alloy indium gallium nitride (InxGa1-xN) offers substantial potential in the development of high-efficiency multi-junction photovoltaic devices due to its wide range of direct band gaps, strong absorption and other optoelectronic properties. This work uses a variety of characterization techniques to examine the properties of InxGa1-xN thin films deposited in a range of compositions by a novel plasma-enhanced evaporation deposition system. Due to the high vapour pressure and low dissociation temperature of indium, the indium incorporation and, ultimately, control of the InxGa1-xN composition was found to be influenced to a greater degree by deposition temperature than variations in the In:Ga source rates in the investigated region of deposition condition space. Under specific deposition conditions, crystalline films were grown in an advantageous nano-columnar microstructure with deposition temperature influencing column size and density. The InxGa1-xN films were determined to have very strong absorption coefficients with band gaps indirectly related to indium content. However, the films also suffer from compositional inhomogeneity and In-related defect complexes with strong phonon coupling that dominates the emission mechanism. This, in addition to the presence of metal impurities, harms the alloy’s electronic properties as no significant photoresponse was observed. This research has demonstrated the material properties that make the InxGa1-xN alloy attractive for multi-junction solar cells and the benefits/drawbacks of the plasma-enhanced evaporation deposition system. Future work is needed to overcome significant challenges relating to crystalline quality, compositional homogeneity and the optoelectronic properties of In-rich InxGa1-xN films in order to develop high-performance photovoltaic devices. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2011-09-29 21:28:58.898
66

Nanoscale Interfaces in Colloidal Quantum Dot Solar Cells: Physical Insights and Materials Engineering Strategies

Kemp, Kyle 22 July 2014 (has links)
With growing global energy demand there will be an increased need for sources of renewable energy such as solar cells. To make these photovoltaic technologies more competitive with conventional energy sources such as coal and natural gas requires further reduction in manufacturing costs that can be realized by solution processing and roll-to-roll printing. Colloidal quantum dots are a bandgap tunable, solution processible, semiconductor material which may offer a path forward to efficient, inexpensive photovoltaics. Despite impressive progress in performance with these materials, there remain limitations in photocarrier collection that must be overcome. This dissertation focuses on the characterization of charge recombination and transport in colloidal quantum dot photovoltaics, and the application of this knowledge to the development of new and better materials. Core-shell, PbS-CdS, quantum dots were investigated in an attempt to achieve better surface passivation and reduce electronic defects which can limit performance. Optimization of this material led to improved open circuit voltage, exceeding 0.6 V for the first time, and record published performance of 6% efficiency. Using temperature-dependent and transient photovoltage measurements we explored the significance of interface recombination on the operation of these devices. Careful engineering of the electrode using atomic layer deposition of ZnO helped lead to better TiO2 substrate materials and allowed us to realize a nearly two-fold reduction in recombination rate and an enhancement upwards of 50 mV in open circuit voltage. Carrier extraction efficiency was studied in these devices using intensity dependent current-voltage data of an operational solar cell. By developing an analytical model to describe recombination loss within the active layer of the device we were able to accurately determine transport lengths ranging up to 90 nm. Transient absorption and photoconductivity techniques were used to study charge dynamics by identifying states in these quantum dot materials which facilitate carrier transport. Thermal activation energies for transport of 60 meV or lower were measured for different PbS quantum dot bandgaps, representing a relatively small barrier for carrier transport. From these measurements a dark, quantum confined energy level was attributed to the electronic bandedge of these materials which serves to govern their optoelectronic behavior.
67

The Influence of Synthesis Temperature on the Crystallographic and Luminescent Properties of NaYF4-based Upconverters and their Application to Amorphous Silicon Photovoltaics

Faulkner, Daniel Owen 28 February 2013 (has links)
There are several factors which conspire to limit the efficiency of solar cells. One of these is the fact that a solar cell is unable to absorb photons of energy less than the band gap of the semiconductor from which it is made; in the case of some high-band gap materials such as amorphous silicon – the model system used in this study – this can mean that as much as 50% of the solar spectrum is unusable. Upconversion phosphors – materials which can, by way of two or more successive photon absorptions, convert low energy (typically near infrared) light into high energy (typically visible) light – offer a potential solution to this problem as they can be used to convert light, which would otherwise be useless to the cell, into light which can be used for power generation. In this thesis we work towards the application of NaYF4-based upconverters to enhanced efficiency amorphous silicon (a-Si) photovoltaic power generation. We begin by synthesizing these upconverters at a range of temperatures and studying the crystallographic and spectroscopic properties of the resulting materials, elucidating heretofore undocumented trends in their luminescence and crystallography, including the effect of synthesis temperature on upconversion intensity, crystallite size, and lattice parameter. We also investigate the emission quantum yield of these materials, beginning with an in depth discussion and investigation of two methods for recording absolute quantum yields. We demonstrate that the quantum yields of the materials may vary by a factor of over 100, depending on the synthesis conditions. After we have fully characterized these properties we turn our attention to the application of these materials to amorphous silicon solar cells, for which we provide a proof of concept by demonstrating the effect of upconversion luminescence on the photoconductance of an a-Si film. We conclude by developing a roadmap for future improvements in the field.
68

The Influence of Synthesis Temperature on the Crystallographic and Luminescent Properties of NaYF4-based Upconverters and their Application to Amorphous Silicon Photovoltaics

Faulkner, Daniel Owen 28 February 2013 (has links)
There are several factors which conspire to limit the efficiency of solar cells. One of these is the fact that a solar cell is unable to absorb photons of energy less than the band gap of the semiconductor from which it is made; in the case of some high-band gap materials such as amorphous silicon – the model system used in this study – this can mean that as much as 50% of the solar spectrum is unusable. Upconversion phosphors – materials which can, by way of two or more successive photon absorptions, convert low energy (typically near infrared) light into high energy (typically visible) light – offer a potential solution to this problem as they can be used to convert light, which would otherwise be useless to the cell, into light which can be used for power generation. In this thesis we work towards the application of NaYF4-based upconverters to enhanced efficiency amorphous silicon (a-Si) photovoltaic power generation. We begin by synthesizing these upconverters at a range of temperatures and studying the crystallographic and spectroscopic properties of the resulting materials, elucidating heretofore undocumented trends in their luminescence and crystallography, including the effect of synthesis temperature on upconversion intensity, crystallite size, and lattice parameter. We also investigate the emission quantum yield of these materials, beginning with an in depth discussion and investigation of two methods for recording absolute quantum yields. We demonstrate that the quantum yields of the materials may vary by a factor of over 100, depending on the synthesis conditions. After we have fully characterized these properties we turn our attention to the application of these materials to amorphous silicon solar cells, for which we provide a proof of concept by demonstrating the effect of upconversion luminescence on the photoconductance of an a-Si film. We conclude by developing a roadmap for future improvements in the field.
69

Sputtering for silicon photovoltaics: from nanocrystals to surface passivation

Flynn, Christopher Richard, ARC Centre of Excellence in Advanced Silicon Photovoltaics & Photonics, Faculty of Engineering, UNSW January 2009 (has links)
Deposition of thin material films by sputtering is an increasingly common process in the field of silicon (Si)-based photovoltaics. One of the recently developed sputter-deposited materials applicable to Si photovoltaics comprises Si nanocrystals (NCs) embedded in a Si-based dielectric. The particular case of Si nanocrystals in a Silicon Dioxide (SiO2) matrix was studied by fabricating metal-insulator-semiconductor (MIS) devices, in which the insulating layer consists of a single layer of Si NCs in SiO2 deposited by sputtering (Si:NC-MIS devices). These test structures were subjected to impedance measurements. The presence of Si NCs was found to result in two distinct capacitance peaks. The first of these peaks is attributable to the small signal response of states at the insulator/substrate interface, enhanced by the presence of fixed charge associated with the NC layer. The second peak, which occurs without precedent, is due to external inversion layer coupling, in conjunction with a transition between tunnel-limited and semiconductor-limited electron current. Si:NC-MIS devices are also potential test structures for energy-selective contacts, based on SiO2/Si NC/SiO2 double barrier structures fabricated by sputtering. Using a one-dimensional model, current-voltage (I-V) curve simulations were performed for similar structures, in which the Si NCs are replaced by a Si quantum well (QW). The simulations showed that for non-degenerately doped Si substrates, the density of defects in the SiO2 layers can strongly influence the position of I-V curve structure induced by QW quasi-bound states. Passivation of crystalline Si (c-Si) surfaces by sputter-deposited dielectric films is another major application of sputtering for Si photovoltaics. This application was explored for the cases of sputtered SiO2 and hydrogenated Silicon Oxy-Carbide (SiOC:H). For the case of sputtered SiO2, an effective surface recombination velocity of 146 cm/s was achieved for an injection level of 1E15 cm???3. The investigated SiOC:H films were found to be unsuitable for surface passivation of Si, however their passivation performance could be slightly improved by first coating the Si surface with a chemically-grown or sputtered SiO2 layer. The investigations performed into specific aspects of sputter-deposited SiO2, Si NCs, and SiOC:H have highlighted important properties of these films, and confirmed the effectiveness of sputtering as a deposition technology for Si photovoltaics.
70

Close-Spaced Vapor Transport for III-V Solar Absorbing Devices

Greenaway, Ann 10 April 2018 (has links)
Capture of the energy in sunlight relies mainly on the use of light-absorbing semiconductors, in solar cells and in water-splitting devices. While solar cell efficiency has increased dramatically since the first practical device was made in 1954, production costs for the most-efficient solar absorbers, III-V semiconductors, remain high. This is largely a result of use of expensive, slow growth methods which rely on hazardous gas-phase precursors. Alternative growth methods are necessary to lower the cost for III-V materials for use in solar cells and improve the practicality of water-splitting devices. The research goal of this dissertation is two-fold: to expand the capabilities of close-spaced vapor transport, an alternative growth method for III-Vs to demonstrate its compatibility with current technologies; and to explore the fundamental chemistry of close-spaced vapor transport as a growth method for these materials. This dissertation surveys plausibly lower-cost growth methods for III-V semiconductors (Chapter II) and presents in-depth studies on the growth chemistry of two ternary III-Vs: GaAs1-xPx (Chapter III) and Ga1-xInxP (Chapter IV). Finally, the growth of GaAs microstructures which could be utilized in a water-splitting device is studied (Chapter V). This dissertation includes previously published and unpublished co-authored material. / 2019-01-09

Page generated in 0.0254 seconds