Spelling suggestions: "subject:"phylogenetic models"" "subject:"hylogenetic models""
1 |
Improving the accuracy and realism of Bayesian phylogenetic analysesBrown, Jeremy Matthew 19 October 2009 (has links)
Central to the study of Life is knowledge both about the underlying relationships
among living things and the processes that have molded them into their diverse forms.
Phylogenetics provides a powerful toolkit for investigating both aspects. Bayesian
phylogenetics has gained much popularity, due to its readily interpretable notion of
probability. However, the posterior probability of a phylogeny, as well as any dependent
biological inferences, is conditioned on the assumed model of evolution and its priors,
necessitating care in model formulation. In Chapter 1, I outline the Bayesian perspective
of phylogenetic inference and provide my view on its most outstanding questions. I then
present results from three studies that aim to (i) improve the accuracy of Bayesian
phylogenetic inference and (ii) assess when the model assumed in a Bayesian analysis is
insufficient to produce an accurate phylogenetic estimate. As phylogenetic data sets increase in size, they must also accommodate a greater
diversity of underlying evolutionary processes. Partitioned models represent one way of
accounting for this heterogeneity. In Chapter 2, I describe a simulation study to
investigate whether support for partitioning of empirical data sets represents a real signal
of heterogeneity or whether it is merely a statistical artifact. The results suggest that
empirical data are extremely heterogeneous. The incorporation of heterogeneity into
inferential models is important for accurate phylogenetic inference.
Bayesian phylogenetic estimates of branch lengths are often wildly unreasonable.
However, branch lengths are important input for many other analyses. In Chapter 3, I
study the occurrence of this phenomenon, identify the data sets most likely to be affected,
demonstrate the causes of the bias, and suggest several solutions to avoid inaccurate
inferences.
Phylogeneticists rarely assess absolute fit between an assumed model of evolution
and the data being analyzed. While an approach to assessing fit in a Bayesian framework
has been proposed, it sometimes performs quite poorly in predicting a model’s
phylogenetic utility. In Chapter 4, I propose and evaluate new test statistics for assessing
phylogenetic model adequacy, which directly evaluate a model’s phylogenetic
performance. / text
|
2 |
Improved models of biological sequence evolutionMurrel, Benjamin 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Computational molecular evolution is a field that attempts to characterize
how genetic sequences evolve over phylogenetic trees – the branching processes
that describe the patterns of genetic inheritance in living organisms. It has a
long history of developing progressively more sophisticated stochastic models
of evolution. Through a probabilist’s lens, this can be seen as a search for
more appropriate ways to parameterize discrete state continuous time Markov
chains to better encode biological reality, matching the historical processes
that created empirical data sets, and creating useful tools that allow biologists
to test specific hypotheses about the evolution of the organisms or the genes
that interest them. This dissertation is an attempt to fill some of the gaps that
persist in the literature, solving what we see as existing open problems. The
overarching theme of this work is how to better model variation in the action
of natural selection at multiple levels: across genes, between sites, and over
time. Through four published journal articles and a fifth in preparation, we
present amino acid and codon models that improve upon existing approaches,
providing better descriptions of the process of natural selection and better
tools to detect adaptive evolution. / AFRIKAANSE OPSOMMING: Komputasionele molekulêre evolusie is ’n navorsingsarea wat poog om die evolusie
van genetiese sekwensies oor filogenetiese bome – die vertakkende prosesse
wat die patrone van genetiese oorerwing in lewende organismes beskryf – te karakteriseer.
Dit het ’n lang geskiedenis waartydens al hoe meer gesofistikeerde
waarskynlikheidsmodelle van evolusie ontwikkel is. Deur die lens van waarskynlikheidsleer
kan hierdie proses gesien word as ’n soektog na meer gepasde
metodes om diskrete-toestand kontinuë-tyd Markov kettings te parametriseer
ten einde biologiese realiteit beter te enkodeer – op so ’n manier dat die historiese
prosesse wat tot die vorming van biologiese sekwensies gelei het nageboots
word, en dat nuttige metodes geskep word wat bioloë toelaat om spesifieke hipotesisse
met betrekking tot die evolusie van belanghebbende organismes of
gene te toets. Hierdie proefskrif is ’n poging om sommige van die gapings
wat in die literatuur bestaan in te vul en bestaande oop probleme op te los.
Die oorkoepelende tema is verbeterde modellering van variasie in die werking
van natuurlike seleksie op verskeie vlakke: variasie van geen tot geen, variasie
tussen posisies in gene en variasie oor tyd. Deur middel van vier gepubliseerde
joernaalartikels en ’n vyfde artikel in voorbereiding, bied ons aminosuur- en
kodon-modelle aan wat verbeter op bestaande benaderings – hierdie modelle
verskaf beter beskrywings van die proses van natuurlike seleksie sowel as beter
metodes om gevalle van aanpassing in evolusie te vind.
|
Page generated in 0.0564 seconds