Spelling suggestions: "subject:"bayesian phylogenetic"" "subject:"bayesian phylogenetically""
1 |
Bayesian phylogenetic approaches to retroviral evolution : recombination, cross-species transmission, and immune escapeKist, Nicolaas Christiaan January 2017 (has links)
No description available.
|
2 |
The evolution of social systems in human and non-human primatesOpie, Christopher Francis January 2013 (has links)
From a Darwinian perspective, both history and environment are causal factors for change in animal social behaviour. Because behaviour leaves no fossil evidence researchers have focused on how social systems help animals and humans adapt to their current environments and have only been able to make tentative suggestions about how such systems may have evolved. However, a new theoretical framework, based on Darwin’s insights, allows phylogenetic relatedness to be incorporated into comparative analyses to discover the ancestral states of social behaviour and the ultimate drivers of change in human and primate societies. This thesis uses these new methods to investigate the history and drivers of change in human and primate sociality and proposes a new model of primate social evolution. Analyses of mating systems suggest that social monogamy in humans and other primates is the result of infanticide risk brought about by life history changes. These methods were also able to reveal how changes in inheritance rules to matriliny among Bantu-speaking societies, contributed to a switch to matrilocal residence, which in turn contributed to a change from polygynous marriage to monogamy. Cultural history effects change in both descent and residence patterns, while geographical proximity also affects descent, but residence and environmental factors drive changes in marriage. This approach may provide a way for the various schools for the study of human and primate social behaviour to collaborate more closely and provide ultimate answers to the drivers of change in human society.
|
3 |
Comparative Sequence Analysis Elucidates the Evolutionary Patterns of Yersinia pestis in New Mexico over Thirty-Two YearsWarren, M. Elizabeth 11 April 2022 (has links)
Yersinia pestis, a gram-negative bacterium, is the causative agent of plague. Y. pestis is a zoonotic pathogen that occasionally infects humans, and is endemic in the western United States. History gives evidence of three main plague pandemics. The first, originating in Egypt in 541AD, is known as the Justinian plague. The second, perhaps most well-known, is thought to have emerged in 1347AD in China, and is called the Black Death. The third, and current plague pandemic, also emerged in China in 1855. In 1899, Y. pestis was established in California, and the plague in other parts of America evolved from this initial introduction. In order to understand evolutionary patterns, we sequenced and analyzed 22 novel Y. pestis genomes from New Mexico. Performing a multiple genome alignment was the first step of our computational pipeline, after which evolutionary patterns were elucidated. Results from this study include predictions of four genes under negative selection pressure. Three of these genes were located on the Y. pestis chromosome, the fourth on the pCD1 virulence plasmid. This study also revealed 42 sites displaying statistically significant skew in the observed residue distribution when comparing sequences based on the year of isolation, and nine significant sites when comparing sequences based on the host species. Phylogenetic tree reconstruction showed a monophyletic pattern for sequences collected in the United States. Taken together, these analyses shed light on the evolutionary history of this pathogen in the southwestern US over a focused time range.
|
4 |
Improving the accuracy and realism of Bayesian phylogenetic analysesBrown, Jeremy Matthew 19 October 2009 (has links)
Central to the study of Life is knowledge both about the underlying relationships
among living things and the processes that have molded them into their diverse forms.
Phylogenetics provides a powerful toolkit for investigating both aspects. Bayesian
phylogenetics has gained much popularity, due to its readily interpretable notion of
probability. However, the posterior probability of a phylogeny, as well as any dependent
biological inferences, is conditioned on the assumed model of evolution and its priors,
necessitating care in model formulation. In Chapter 1, I outline the Bayesian perspective
of phylogenetic inference and provide my view on its most outstanding questions. I then
present results from three studies that aim to (i) improve the accuracy of Bayesian
phylogenetic inference and (ii) assess when the model assumed in a Bayesian analysis is
insufficient to produce an accurate phylogenetic estimate. As phylogenetic data sets increase in size, they must also accommodate a greater
diversity of underlying evolutionary processes. Partitioned models represent one way of
accounting for this heterogeneity. In Chapter 2, I describe a simulation study to
investigate whether support for partitioning of empirical data sets represents a real signal
of heterogeneity or whether it is merely a statistical artifact. The results suggest that
empirical data are extremely heterogeneous. The incorporation of heterogeneity into
inferential models is important for accurate phylogenetic inference.
Bayesian phylogenetic estimates of branch lengths are often wildly unreasonable.
However, branch lengths are important input for many other analyses. In Chapter 3, I
study the occurrence of this phenomenon, identify the data sets most likely to be affected,
demonstrate the causes of the bias, and suggest several solutions to avoid inaccurate
inferences.
Phylogeneticists rarely assess absolute fit between an assumed model of evolution
and the data being analyzed. While an approach to assessing fit in a Bayesian framework
has been proposed, it sometimes performs quite poorly in predicting a model’s
phylogenetic utility. In Chapter 4, I propose and evaluate new test statistics for assessing
phylogenetic model adequacy, which directly evaluate a model’s phylogenetic
performance. / text
|
5 |
Bayesian Phylogenetics of Snail-Killing Flies (Diptera: Sciomyzidae) and Freshwater Mussels (Bivalvia: Unionidae): Implications of Parallel Evolution, Feeding Group Structure and Molecular EvolutionChapman, Eric George 26 November 2008 (has links)
No description available.
|
6 |
Multiple sequence analysis in the presence of alignment uncertaintyHerman, Joseph L. January 2014 (has links)
Sequence alignment is one of the most intensely studied problems in bioinformatics, and is an important step in a wide range of analyses. An issue that has gained much attention in recent years is the fact that downstream analyses are often highly sensitive to the specific choice of alignment. One way to address this is to jointly sample alignments along with other parameters of interest. In order to extend the range of applicability of this approach, the first chapter of this thesis introduces a probabilistic evolutionary model for protein structures on a phylogenetic tree; since protein structures typically diverge much more slowly than sequences, this allows for more reliable detection of remote homologies, improving the accuracy of the resulting alignments and trees, and reducing sensitivity of the results to the choice of dataset. In order to carry out inference under such a model, a number of new Markov chain Monte Carlo approaches are developed, allowing for more efficient convergence and mixing on the high-dimensional parameter space. The second part of the thesis presents a directed acyclic graph (DAG)-based approach for representing a collection of sampled alignments. This DAG representation allows the initial collection of samples to be used to generate a larger set of alignments under the same approximate distribution, enabling posterior alignment probabilities to be estimated reliably from a reasonable number of samples. If desired, summary alignments can then be generated as maximum-weight paths through the DAG, under various types of loss or scoring functions. The acyclic nature of the graph also permits various other types of algorithms to be easily adapted to operate on the entire set of alignments in the DAG. In the final part of this work, methodology is introduced for alignment-DAG-based sequence annotation using hidden Markov models, and RNA secondary structure prediction using stochastic context-free grammars. Results on test datasets indicate that the additional information contained within the DAG allows for improved predictions, resulting in substantial gains over simply analysing a set of alignments one by one.
|
7 |
Caractérisation et délimitation des sous-espèces de Gesneria viridiflora (Gesneriaceae) dans les AntillesLambert, François 01 1900 (has links)
Une taxonomie révisée et une connaissance des limites d’espèces demeurent toujours importantes dans les points chauds en biodiversité comme les Antilles où de nombreuses espèces endémiques sont retrouvées. Des limites d’espèces divergentes impliquent un différent nombre d’espèces retrouvées dans un écosystème, ce qui peut exercer une influence sur les décisions prises face aux enjeux de conservation. Les genres Gesneria et Rhytidophyllum qui forment les principaux représentants de la famille des Gesneriaceae dans les Antilles comprennent plusieurs taxons aux limites d’espèces ambigües et quelques espèces qui ont des sous-espèces reconnues. C’est le cas de Gesneria viridiflora (Decne.) Kuntze qui comprend quatre sous-espèces géographiquement isolées et qui présentent des caractères végétatifs et reproducteurs similaires et variables. Une délimitation d’espèces approfondie de ce complexe d’espèce est effectuée ici à partir d’une approche de taxonomie intégrative considérant des données morphologiques, génétiques et bioclimatiques. Les données morphologiques quantitatives et qualitatives obtenues à partir de spécimens d’herbier sont utilisées pour délimiter des groupes morphologiques à l’aide d’une analyse en coordonnées principales. Ces groupes sont ensuite testés à l’aide de séquences d’ADN de quatre régions nucléaires en utilisant une méthode bayesienne basée sur la théorie de la coalescence. Finalement, les occurrences et les valeurs de variables de température et de précipitation qui y prévalent sont utilisées dans une analyse en composantes principales bioclimatique pour comparer les groupes délimités morphologiquement et génétiquement. Les résultats de l’analyse morphologique multivariée supportent la distinction entre les groupes formés par les sous-espèces actuellement reconnues de G. viridiflora. Les résultats, incluant des données génétiques, suggèrent une distinction jusqu’ici insoupçonnée des populations du Massif de la Hotte au sud-ouest d’Haïti qui sont génétiquement plus rapprochées des populations de Cuba que de celles d’Hispaniola. Bioclimatiquement, les groupes délimités par les analyses morphologiques et génétiques sont distincts. L’approche de taxonomie intégrative a permis de distinguer cinq espèces distinctes plutôt que les quatre sous-espèces acceptées jusqu’à aujourd’hui. Ces espèces sont : G. acrochordonanthe, G. quisqueyana, G. sintenisii, G. sylvicola et G. viridiflora. Une carte de distribution géographique, un tableau de la nouvelle taxonomie applicable et une clé d’identification des espèces sont présentés. La nouvelle taxonomie déterminée dans cette étude démontre un endémisme insoupçonné dans plusieurs régions du point chaud en biodiversité des Antilles et souligne l’importance d’investiguer les limites d’espèces dans les groupes diversifiés comprenant des taxons aux limites d’espèces incomprises. / An accurate taxonomy and knowledge of species limits is of great importance in endemic species-rich biodiversity hotspots like the Caribbean. Indeed, conflicting species limits can alter biodiversity estimates and influence the decisions taken on conservation issues. The genera Gesneria and Rhytidophyllum constitute the main representatives of the Caribbean Gesneriaceae and comprise a few species with unclear boundaries as well as species having several recognized subspecies. Gesneria viridiflora (Decne.) Kuntze is a good example of the latter and consists of four geographically isolated subspecies that possess similar but variable vegetative and reproductive characters. We conducted a thorough investigation of species delimitation in this species complex using an integrative taxonomic approach that includes morphology, genetics and bioclimatic data. Qualitative and quantitative morphological data obtained from herbarium specimens were used to circumscribe morphologically distinct groups using a principal coordinates analysis. These groups were then tested at the genetic level using a Bayesian Phylogenetics and Phylogeography (BPP) species delimitation approach based on four nuclear regions. Bioclimatic multivariate analyses of temperature and precipitation variables obtained from occurrence data were used to compare the groups delimited by morphological and genetic data. The results suggest the presence of five distinct species in this complex. Four of these broadly correspond to the actually defined subspecies: G. quisqueyana, G. sintenisii, G. sylvicola and G. viridiflora. An additional highly endemic species was recognized, G. acrochordonanthe, that consists of the populations found at the Massif de la Hotte in Southwestern Haiti. A distribution map, a table of the new taxonomy and an identification key to the species are provided. The new taxonomy proposed in this study shows an unsuspected species endemism in some regions of the Caribbean biodiversity hotspot and underlines the importance of investigating species boundaries in diversified groups containing taxa with poorly understood boundaries.
|
Page generated in 0.0578 seconds