• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 3
  • 2
  • 1
  • Tagged with
  • 61
  • 61
  • 61
  • 20
  • 16
  • 16
  • 14
  • 14
  • 14
  • 12
  • 12
  • 12
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Physical-Layer Security in Orbital Angular Momentum Multiplexing Free-Space Optical Communications

Sun, Xiaole, Djordjevic, Ivan B. 02 1900 (has links)
The physical-layer security of a line-of-sight (LOS) free-space optical (FSO) link using orbital angular momentum (OAM) multiplexing is studied. We discuss the effect of atmospheric turbulence to OAM-multiplexed FSO channels. We numerically simulate the propagation of OAM-multiplexed beam and study the secrecy capacity. We show that, under certain conditions, the OAM multiplexing technique provides higher security over a single-mode transmission channel in terms of the total secrecy capacity and the probability of achieving a secure communication. We also study the power cost effect at the transmitter side for both fixed system power and equal channel power scenarios.
32

On applications of puncturing in error-correction coding

Klinc, Demijan 05 April 2011 (has links)
This thesis investigates applications of puncturing in error-correction coding and physical layer security with an emphasis on binary and non-binary LDPC codes. Theoretical framework for the analysis of punctured binary LDPC codes at short block lengths is developed and a novel decoding scheme is designed that achieves considerably faster convergence than conventional approaches. Subsequently, optimized puncturing and shortening is studied for non-binary LDPC codes over binary input channels. Framework for the analysis of punctured/shortened non-binary LDPC codes over the BEC channel is developed, which enables the optimization of puncturing and shortening patterns. Insight from this analysis is used to develop algorithms for puncturing and shortening of non-binary LDPC codes at finite block lengths that perform well. It is confirmed that symbol-wise puncturing is generally bad and that bit-wise punctured non-binary LDPC codes can significantly outperform their binary counterparts, thus making them an attractive solution for future communication systems; both for error-correction and distributed compression. Puncturing is also considered in the context of physical layer security. It is shown that puncturing can be used effectively for coding over the wiretap channel to hide the message bits from eavesdroppers. Further, it is shown how puncturing patterns can be optimized for enhanced secrecy. Asymptotic analysis confirms that eavesdroppers are forced to operate at BERs very close to 0.5, even if their signal is only slightly worse than that of the legitimate receivers. The proposed coding scheme is naturally applicable at finite block lengths and allows for efficient, almost-linear time encoding. Finally, it is shown how error-correcting codes can be used to solve an open problem of compressing data encrypted with block ciphers such as AES. Coding schemes for multiple chaining modes are proposed and it is verified that considerable compression gains are attainable for binary sources.
33

Coding techniques for multi-user physical layer security

Pierrot, Alexandre Jean Louis J. 21 September 2015 (has links)
The fast development of wireless networks, which are intrinsically exposed to eavesdropping, has created a growing concern for confidentiality. While classical cryptographic schemes require a key provided by the end-user, physical-layer security leverages the randomness of the physical communication medium as a source of secrecy. The main benefit of physical-layer security techniques is their relatively low cost and their ability to combine with any existing security mechanisms. This dissertation provides an analysis including the theoretical study of the two-way wiretap channel to obtain a better insight into how to design coding mechanisms, practical tests with experimental systems, and the design of actual codes. From a theoretical standpoint, the study confirms the benefits of combining several multi-user coding techniques including cooperative jamming, coded cooperative jamming and secret key generation. For these different mechanisms, the trade-off between reliability, secrecy and communication rate is clarified under a stringent strong secrecy metric. Regarding the design of practical codes, spatially coupled LDPC codes, which were originally designed for reliability, are modified to develop a coded cooperative jamming code. Finally, a proof-of-principle practical wireless system is provided to show how to implement a secret key generation system on experimental programmable radios. This testbed is then used to assess the realistic performance of such systems in terms of reliability, secrecy and rate.
34

"Security at the Physical and MAC Layers in Wireless Networks"

El Hajj Shehadeh, Youssef 12 April 2013 (has links)
No description available.
35

Physical-layer security

Bloch, Matthieu 05 May 2008 (has links)
As wireless networks continue to flourish worldwide and play an increasingly prominent role, it has become crucial to provide effective solutions to the inherent security issues associated with a wireless transmission medium. Unlike traditional solutions, which usually handle security at the application layer, the primary concern of this thesis is to analyze and develop solutions based on coding techniques at the physical layer. First, an information-theoretically secure communication protocol for quasi-static fading channels was developed and its performance with respect to theoretical limits was analyzed. A key element of the protocol is a reconciliation scheme for secret-key agreement based on low-density parity-check codes, which is specifically designed to operate on non-binary random variables and offers high reconciliation efficiency. Second, the fundamental trade-offs between cooperation and security were analyzed by investigating the transmission of confidential messages to cooperative relays. This information-theoretic study highlighted the importance of jamming as a means to increase secrecy and confirmed the importance of carefully chosen relaying strategies. Third, other applications of physical-layer security were investigated. Specifically, the use of secret-key agreement techniques for alternative cryptographic purposes was analyzed, and a framework for the design of practical information-theoretic commitment protocols over noisy channels was proposed. Finally, the benefit of using physical-layer coding techniques beyond the physical layer was illustrated by studying security issues in client-server networks. A coding scheme exploiting packet losses at the network layer was proposed to ensure reliable communication between clients and servers and security against colluding attackers.
36

Physical Layer Algorithms for Reliability and Spectral Efficiency in Wireless Communications

Ankarali, Zekeriyya Esat 15 November 2017 (has links)
Support of many different services, approximately 1000x increase of current data rates, ultra-reliability, low latency and energy/cost efficiency are among the demands from upcoming 5G standard. In order to meet them, researchers investigate various potential technologies involving different network layers and discuss their trade-offs for possible 5G scenarios. Waveform design is a critical part of these efforts and various alternatives have been heavily discussed over the last few years. Besides that, wireless technology is expected to be deployed in many critical applications including the ones involving with daily life activities, health-care and vehicular traffic. Therefore, security of wireless systems is also crucial for a reliable and confidential deployment. In order to achieve these goals in future wireless systems, physical layer (PHY) algorithms play a vital role not only in waveform design but also for improving security. In this dissertation, we draft the ongoing activities in PHY in terms of waveform design and security for providing spectrally efficient and reliable services considering various scenarios, and present our algorithms in this direction. Regarding the waveform design, orthogonal frequency division multiplexing (OFDM) is mostly considered as the base scheme since it is the dominant technology in many existing standards and is also considered for 5G new radio. We specifically propose two approaches for the improvement of OFDM in terms of out-of-band emission and peak to average power ratio. We also present how the requirements of different 5G RAN scenarios reflect on waveform parameters and explore the motivations behind designing advanced frames that include multiple waveforms with different parameters, referred to as numerologies by the 3GPP community, as well as the problems that arise with such coexistence. On the security aspect, we firstly consider broadband communication scenarios and propose practical security approaches that suppress the cyclic features of OFDM and single carrier-frequency domain equalization based waveforms and remove their vulnerability to the eavesdropping attacks. Additionally, an authentication mechanism in PHY is presented for wireless implantable medical devices. Thus, we address the security issues for two critical wireless communication scenarios in PHY to contribute a confidential and reliable deployment of wireless technologies in the near future.
37

On the performance analysis of full-duplex networks

Alves, H. (Hirley) 17 March 2015 (has links)
Abstract In this thesis we study Full-Duplex (FD) cooperative networks from different perspectives, using concepts of information theory, communication theory and applied statistics. We provide a comprehensive performance analysis of cooperative communications systems operating with FD relays. We demonstrate that FD relaying is feasible even when experiencing strong self-interference, and we show its application under different scenarios. More importantly, the results attained through this work serve as a benchmark for design as well as deployment of current and future wireless communications technologies. Our first contribution is a comprehensive overview of the state-of-the-art on FD communications, more specifically on FD relaying, and we revisit some of the main properties of cooperative schemes. Another contribution comes from an extensive analysis of outage probability, throughput and energy efficiency of FD relaying over Rayleigh fading channels. Besides the mathematical framework introduced herein, we also show that in some cases cooperative Half-Duplex (HD) schemes achieve better performance than FD relaying with self-interference. Therefore, we draw a discussion on the trade-offs between HD and FD schemes as well as between throughput and energy efficiency. Then, we investigate the performance of FD relaying protocols under general fading settings, namely Nakagami-m fading. Our findings allow a better understanding of effects of the residual self-interference and line-of-sight on a FD relaying setup. Our final contribution lies on the performance analysis of secure cooperative networks relying on information theoretical metrics to provide enhanced privacy and confidentiality to wireless networks. Thus, we provide a comprehensive mathematical framework for composite fading channels. Even though experiencing strong self-interference, we demonstrate that FD relaying is feasible also under secrecy constraints, thus perfect secrecy can be achieved. / Tiivistelmä Tässä työssä tutkitaan kaksisuuntaisia (Full-Duplex, FD) yhteistoiminnallisia verkkoja informaatioteorian, tietoliikenneteorian ja sovelletun tilastotieteen näkökulmista. Työssä suoritetaan kattava suorityskykyarviointi yhteistoiminnallisten FD-välittimien muodostamassa tietoliikenneverkossa. FD-releointi osoitetaan toimintakelpoiseksi useissa toimintaympäristöissä ja sovelluksissa jopa voimakkaan omahäiriön vallitessa. Mikä tärkeintä, työssä saavutetut tulokset muodostavat vertailukohdan sekä nykyisten että tulevien langattomien verkkoteknologioiden suunnitteluun ja toteutukseen. Aluksi esitetään perusteellinen katsaus uusimpiin FD-tiedonsiirtomenetelmiin, etenkin FD-välitykseen, sekä kerrataan yhteistoiminnallisten tekniikoiden pääpiirteet. Seuraavaksi analysoidaan laajasti FD-välitinyhteyden luotettavuutta sekä spektrinkäyttö- ja energiatehokkuutta Rayleigh-häipyvissä radiokanavissa. Matemaattisen viitekehyksen lisäksi osoitetaan myös, että joissain tapauksissa yhteistoiminnalliset vuorosuuntaiset (Half-Duplex, HD) menetelmät ovat parempia kuin FD-releointi omahäiriön vallitessa. Niinpä työssä käydään keskustelua kaupankäynnistä HD- ja FD -menetelmien kesken kuten myös spektrinkäyttö- ja energiatehokkuuden kesken. Seuraavaksi tutkitaan FD-releoinnin suorityskykyä yleistetymmässä häipymäympäristössä eli Nakagami-m -kanavassa. Saavutetut tulokset auttavat ymmärtämään paremmin jäljelle jäävän omahäiriön ja näköyhteyslinkkien vuorovaikutussuhteet FD-välitinjärjestelmän suunnittelussa. Lopuksi käsitellään tietoturvattuja yhteistoiminnallisia verkkoja informaatioteoreettisin mittarein, joilla pyritään tarjoamaan langattomien verkkojen käyttäjille parempaa yksityisyyden suojaa ja luottamuksellisuutta. Tätä varten työssä esitetään perusteelliset matemaattiset puitteet yhdistettyjen häipyvien kanavien tutkimiseen. Tuloksena osoitetaan, että myös salassapitokriteerien kannalta on mahdollista käyttää voimakkaan omahäiriön kokemaa FD-releointia vahvan salauksen saavuttamiseen.
38

A Study of Reconfigurable Antennas as a Solution for Efficiency, Robustness, and Security of Wireless Systems

Mehmood, Rashid 01 June 2015 (has links) (PDF)
The reconfigurable aperture (RECAP) is a reconfigurable antenna consisting of a dense array of electronically controlled elements, which can be manipulated to support many antenna functions within a single architecture. RECAPs are explored herein as an enabling technology for future software defined and cognitive radio architectures, as well as compact wireless devices supporting many bands and services. First, the concept of a parasitic RECAP is developed and analyzed for various communication applications. This begins with the analysis of existing RECAP topologies (e.g. planar and parasitic) using a hybrid method combining full wave simulations and network analysis. Next, a performance versus complexity analysis is performed to assess the use of a parasitic RECAP for the most critical communications functions: pattern synthesis, MIMO communications and physical-layer wireless security. To verify simulation results, a prototype parasitic RECAP is also built and deployed in real propagation environments. Given the potential of adaptive and reconfigurable architectures for providing enhanced security, an idealized reconfigurable antenna is analyzed, resulting in the concept of secure array synthesis. The objective is to find optimal array beamforming for secure communication in the presence of a passive eavesdropper in a static line-of-sight (LOS) channel. The method is then extended to the case of multipath propagation environments. The problem is solved by casting it into the form of a semi-definite program, which can be solved with convex optimization. The method is general and can be applied to an arbitrary array topology with or without antenna mutual-coupling. Due to complexity of the problem, initial attention has been restricted to idealized reconfigurable antennas (smart antennas), where excitation amplitude and phase at each element can be controlled independently. Lastly, reconfigurable antennas are investigated as a solution to support the emerging application of over-the-air (OTA) testing in a low-cost and compact way, resulting in the concept of the reconfigurable over-the-air chamber (ROTAC). First, an idealized two-dimensional ROTAC is analyzed, revealing that the fading distribution, spatial correlation, frequency selectivity, and multipath angular spectrum can be controlled by proper specification of the random loads. Later, a prototype of ROTAC is built to study the fading statistics and angular characteristics of the multipath fields inside a practical chamber.
39

Decode and Forward Relay Assisting Active Jamming in NOMA System

Akurathi, Lakshmikanth, Chilluguri, Surya Teja Reddy January 2022 (has links)
Non-orthogonal multiple access (NOMA), with its exceptional spectrum efficiency, was thought to be a promising technology for upcoming wireless communications. Physical layer security has also been investigated to improve the security performance of the system. Power-domain NOMA has been considered for this paper, where multiple users can share the same spectrum which bases this sharing on distinct power values. Power allocation is used to allocate different power to the users based on their channel condition. Data signals of different users are superimposed on the transmitter's side, and the receiver uses successive interference cancellation (SIC) to remove the unwanted signals before decoding its own signal. There exist an eavesdropper whose motive is to eavesdrop on the confidential information that is being shared with the users. The network model developed in this way consists of two links, one of which considers the relay transmission path from the source to Near User to Far User and the other of which takes into account the direct transmission path from the source to the destination, both of which experience Nakagami-m fading. To degrade the eavesdropper's channel, the jamming technique is used against the eavesdropper where users are assumed to be in a full-duplex mode which aims to improve the security of the physical layer. Secrecy performance metrics such as secrecy outage probability, secrecy capacity, etc. are evaluated and analyzed for the considered system. Mathematical analysis and simulation using MATLAB are done to assess, analyze and visualize the system's performance in the presence of an eavesdropper when the jamming technique is applied. According to simulation results, the active jamming approach enhances the secrecy performance of the entire system and leads to a positive improvement in the secrecy rate.
40

Physical Layer Security for MIMOTransmission of Short PacketCommunications

Duvva, Varun, Anugu, Bharath Reddy January 2024 (has links)
This thesis explores the practical application of Physical Layer Security (PLS) inMultiple-Input Multiple-Output (MIMO) systems, particularly focusing on ShortPacket Communication (SPC). The aim is to enhance the security of wireless com-munications against eavesdropping threats. By employing advanced techniques suchas Maximum Ratio Transmission (MRT) and Maximum Ratio Combining (MRC),along with Beamforming, the study demonstrates how these methods can signifi-cantly strengthen the signal integrity in MIMO systems.In developing a comprehensive system model that integrates PLS into MIMO,the research provides a dual approach of evaluation. Rigorous theoretical analy-sis coupled with MATLAB simulations are utilized to validate the effectiveness ofthe proposed model. These methods not only underscore the feasibility of PLSin real-world applications but also highlight the potential improvements in wirelesscommunication security, offering a valuable contribution to the field.

Page generated in 0.0677 seconds