• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 41
  • 10
  • Tagged with
  • 123
  • 123
  • 66
  • 66
  • 57
  • 47
  • 46
  • 46
  • 45
  • 45
  • 45
  • 45
  • 45
  • 45
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The effect of orthogonality and antisymmetrisation in the strong-coupling model of nuclear cluster reactions

Thompson, Ian Joseph January 1979 (has links)
The possibility and feasibility is investigated of including in the modelling of nuclear cluster reactions a unified treatment of the effects both of the non-orthogonalities between transfer channels, and of the antisymmetrisation required by the Pauli Principle. The deuteron - nucleus interaction, the simplest cluster reaction, is considered in detail within the Coupled Channels framework. The Coupled Channels formalism was chosen because it accurately handles inelastic and transfer couplings of arbitary strengths. The fact that transfer channels are orthogonal to each other only asymptotically is taken into account by reallocating the wave function in the internal region, from the deuteron channels to the transfer channels, taking components from the deuteron channels in ways exactly analogous to the way the antisymmetrisation requirements remove blocked deuteron-core components. Thus a unified treatment of the two effects is facilitated. It is found further that when all possible transfer channels are included, along with all Pauli blockings from the core nucleons, then under certain conditions at low energies, the wave function in the deuteron channel is small and oscillatory in the internal region, leaving the deuteron as a cluster to have largely asymptotic significance. In this limit, the exact non-local potential governing the deuteron channel simplifies considerably in one approximation to be replaceable by just several orthogonality conditions, and these are easily modelled in solving the coupled equations for the radial wave functions. This simplified and unified model has the advantage, since the deuteron's internal wave form is significant only asymptotically, of allowing automatically for arbitary deuteron polarisation by the core (though not vice-versa). Furthermore, the asymptotic matching is not at a fixed radius as in R-matrix theory, but is a continuous process that depends on the binding energies of the actual proton & neutron bound states in the residual nucleus.
52

Étude du transport des électrons suprathermiques en milieu solide ou comprimé dans le cadre de l'allumeur rapide.

Pérez, Frédéric 18 November 2010 (has links) (PDF)
Le concept de fusion par confinement inertiel (FCI) est aujourd'hui largement étudié. Il s'agit de comprimer et chauffer brièvement une petite capsule sphérique remplie de combustible, à l'aide de lasers extrêmement énergétiques. Depuis une quinzaine d'année, la technique d'allumage rapide (AR) propose de faciliter le chauffage de ce combustible en ajoutant un faisceau de particules - des électrons générés par un laser ultra-intense - au moment exact où la compression de la capsule est maximale. La présente thèse constitue une étude expérimentale de ces faisceaux d'électrons générés par lasers picosecondes. Nous présentons des nouveaux résultats sur les caractéristiques de ces électrons après leur accélération par laser (énergie, divergence, etc.) ainsi que sur leur interaction avec la matière qu'ils traversent, qu'elle soit solide ou comprimée. Les résultats expérimentaux exposés révèlent différentes facettes de ces électrons rapides créés par laser, et leur analyse nous a permis de progresser dans la compréhension de certains mécanismes : comment ils sont injectés à l'intérieur de la matière solide, comment mesurer leur divergence, et comment ils peuvent être automatiquement collimatés à l'intérieur de la matière comprimée.
53

Modélisation du régime de préarc dans les fusibles

Memiaghe, S. 04 June 2010 (has links) (PDF)
Le travail présenté a trait à la modélisation et à la simulation numérique des phénomènes physiques qui régissent le régime de préarc dans les fusibles. Le problème thermique est formulé en enthalpie pour décrire les différents états physiques du fusible et le problème électrique permet de décrire les grandeurs électriques et le terme source. Ce modèle prend en compte la dépendance des coefficients de transport avec la température. Les résultats du modèle 2D montrent que la durée du préarc est influencé par les paramètres du circuit et par la géométrie des sections réduites. Lorsque le fusible est soumis aux forts courants de défaut les échanges thermiques dans la lame deviennent négligeables, le temps de préarc est obtenu à partir d'un coefficient empirique utilisé par les industriels le coefficient de Meyer. La modélisation 3D a permis la validation des résultats obtenus avec lame d'argent en 2D et la modélisation des échanges thermiques entre la lame et le milieux poreux. Ces échanges thermiques (conduction et rayonnement) sont mis en évidence sous forme de conditions aux limites d'une part et d'autre part par une méthode d'homogénéisation des grandeurs du milieux poreux basé sur une valeur typique de la porosité
54

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.
55

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.
56

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.
57

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.
58

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.
59

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.
60

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.

Page generated in 0.0867 seconds