• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Étude d’algorithmes de simulation par chaînes de Markov non réversibles

Huguet, Guillaume 10 1900 (has links)
Les méthodes de Monte Carlo par chaînes de Markov (MCMC) utilisent généralement des chaînes de Markov réversibles. Jusqu’à récemment, une grande partie de la recherche théorique sur les chaînes de Markov concernait ce type de chaînes, notamment les théorèmes de Peskun (1973) et de Tierney (1998) qui permettent d’ordonner les variances asymptotiques de deux estimateurs issus de chaînes réversibles différentes. Dans ce mémoire nous analysons des algorithmes simulants des chaînes qui ne respectent pas cette condition. Nous parlons alors de chaînes non réversibles. Expérimentalement, ces chaînes produisent souvent des estimateurs avec une variance asymptotique plus faible et/ou une convergence plus rapide. Nous présentons deux algorithmes, soit l’algorithme de marche aléatoire guidée (GRW) par Gustafson (1998) et l’algorithme de discrete bouncy particle sampler (DBPS) par Sherlock et Thiery (2017). Pour ces deux algorithmes, nous comparons expérimentalement la variance asymptotique d’un estimateur avec la variance asymptotique en utilisant l’algorithme de Metropolis-Hastings. Récemment, un cadre théorique a été introduit par Andrieu et Livingstone (2019) pour ordonner les variances asymptotiques d’une certaine classe de chaînes non réversibles. Nous présentons leur analyse de GRW. De plus, nous montrons que le DBPS est inclus dans ce cadre théorique. Nous démontrons que la variance asymptotique d’un estimateur peut théoriquement diminuer en ajoutant des propositions à cet algorithme. Finalement, nous proposons deux modifications au DBPS. Tout au long du mémoire, nous serons intéressés par des chaînes issues de propositions déterministes. Nous montrons comment construire l’algorithme du delayed rejection avec des fonctions déterministes et son équivalent dans le cadre de Andrieu et Livingstone (2019). / Markov chain Monte Carlo (MCMC) methods commonly use chains that respect the detailed balance condition. These chains are called reversible. Most of the theory developed for MCMC evolves around those particular chains. Peskun (1973) and Tierney (1998) provided useful theorems on the ordering of the asymptotic variances for two estimators produced by two different reversible chains. In this thesis, we are interested in non-reversible chains, which are chains that don’t respect the detailed balance condition. We present algorithms that simulate non-reversible chains, mainly the Guided Random Walk (GRW) by Gustafson (1998) and the Discrete Bouncy Particle Sampler (DBPS) by Sherlock and Thiery (2017). For both algorithms, we compare the asymptotic variance of estimators with the ones produced by the Metropolis- Hastings algorithm. We present a recent theoretical framework introduced by Andrieu and Livingstone (2019) and their analysis of the GRW. We then show that the DBPS is part of this framework and present an analysis on the asymptotic variance of estimators. Their main theorem can provide an ordering of the asymptotic variances of two estimators resulting from nonreversible chains. We show that an estimator could have a lower asymptotic variance by adding propositions to the DBPS. We then present empirical results of a modified DBPS. Through the thesis we will mostly be interested in chains that are produced by deterministic proposals. We show a general construction of the delayed rejection algorithm using deterministic proposals and one possible equivalent for non-reversible chains.
Read more
12

Acceleration Strategies of Markov Chain Monte Carlo for Bayesian Computation / Stratégies d'accélération des algorithmes de Monte Carlo par chaîne de Markov pour le calcul Bayésien

Wu, Chang-Ye 04 October 2018 (has links)
Les algorithmes MCMC sont difficiles à mettre à l'échelle, car ils doivent balayer l'ensemble des données à chaque itération, ce qui interdit leurs applications dans de grands paramètres de données. En gros, tous les algorithmes MCMC évolutifs peuvent être divisés en deux catégories: les méthodes de partage et de conquête et les méthodes de sous-échantillonnage. Le but de ce projet est de réduire le temps de calcul induit par des fonctions complexes ou à grande efficacité. / MCMC algorithms are difficult to scale, since they need to sweep over the whole data set at each iteration, which prohibits their applications in big data settings. Roughly speaking, all scalable MCMC algorithms can be divided into two categories: divide-and-conquer methods and subsampling methods. The aim of this project is to reduce the computing time induced by complex or largelikelihood functions.

Page generated in 0.1054 seconds