• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite Element Analysis of Three-Phase Piezoelectric Nanocomposites

Maxwell, Kevin S. 2009 August 1900 (has links)
In recent years, traditional piezoelectric materials have been pushed to the limit in terms of performance because of countless novel applications. This has caused an increased interest in piezoelectric composites, which combine two or more constituent materials in order to create a material system that incorporates favorable attributes from each constituent. One or more of the constituents exhibits piezoelectric behavior, so that the composite has an effective electromechanical coupling. The composite material may also have enhanced properties such as stiffness, durability, and flexibility. Finite element analyses were conducted on a three-phase piezoelectric nanocomposite in order to investigate the effects of several design parameters on performance. The nanocomposite consisted of a polyimide matrix, beta-CN APB/ODPA, enhanced with single wall carbon nanotubes and PZT-5A particles. The polyimide and nan- otube phases were modeled as a single homogenized phase. This results in a two-phase nanocomposite that can be modeled entirely in the continuum domain. The material properties for the nano-reinforced matrix and PZT-5A were obtained from previous experimental efforts and from the literature. The finite element model consisted of a single representative volume element of the two-phase nanocomposite. Exact periodic boundary conditions were derived and used to minimize the analysis region. The effective mechanical, electrical, and piezoelectric properties were computed for a wide range of nanotube and PZT particle concentrations. A discrepancy was found between the experimental results from the literature and the computational results for the effective electrical properties. Several modified finite element models were developed to explore possible reasons for this discrepancy, and a hypothesis involving dispersion of the nanotubes was formulated as an attempt to explain the difference. The response of the nanocomposite under harmonic loading was also investigated using the finite element model. The effective properties were found to be highly dependent on the dielectric loss of the beta CN/SWNT matrix. It was also found that increasing the matrix loss enhanced piezoelectric performance up to a certain point. Exploiting this type of behavior could be an effective tool in designing piezoelectric composite materials.
2

Desenvolvimento de uma metodologia computacional para determinar coeficientes efetivos de compósitos inteligentes / Development of a computational methodology for determining effective coefficients of the smart composites

Medeiros, Ricardo de 15 February 2012 (has links)
O presente trabalho visa empregar uma metodologia numérica para determinar as propriedades macro mecânica de compósitos ativos (AFC - Active Fiber Composite ou MFC - Macro Fiber Composite), combinando o conceito de Volume Elementar Representativo (VER) com o Método dos Elementos Finitos (MEF). Inicialmente, apresenta-se a fundamentação teórica associada à abordagem numérica empregada. Posteriormente, os modelos numéricos desenvolvidos são aplicados na determinação dos coeficientes efetivos de materiais compósitos inteligentes transversalmente isotrópicos com fibras piezelétricas de seção com forma circular e quadrada, respectivamente. Finalmente, os resultados numéricos obtidos pela metodologia proposta são, então, comparados com resultados da literatura. Constata-se que os resultados obtidos são muito semelhantes aos resultados relatados pela literatura para arranjo quadrático e hexagonal com fibra de geometria circular, sendo que neste caso, compararam-se os resultados numéricos com analíticos obtidos através do Método de Homogeneização Assintótica. Em seguida, a metodologia é aplicada para determinação dos coeficientes efetivos para arranjo quadrático e hexagonal com fibra de geometria quadrada. Empregando diferentes frações volumétricas de fibras, os resultados via MEF foram comparados aos resultados analíticos obtidos através do Método dos Campos Uniformes (Uniform Field Method). Após a avaliação das limitações e potencialidades da metodologia, de forma direta, através de resultados analíticos, realizou-se a avaliação da mesma de forma indireta. Para tal, foram realizadas análises dinâmicas visando comparar as Funções de Resposta em Frequência (FRF) experimentais com as obtidas computacionalmente. Dessa forma, utilizou-se uma viga de alumínio estrutural engastada-livre, onde foram colados duas pastilhas piezelétricas, sendo uma para realizar a excitação da estrutura e, a outra para fazer a aquisição dos dados. Os modelos computacionais via MEF empregaram para o domínio das pastilhas, as propriedades efetivas determinadas através da metodologia desenvolvida. Os resultados obtidos demonstraram mais uma vez as potencialidades da metodologia proposta. Assim, conclui-se que a metodologia numérica não é somente uma boa alternativa para o cálculo de coeficientes efetivos de compósitos inteligentes, mas também uma ferramenta para o projeto de estruturas inteligentes monitoradas por materiais piezelétricos. / This work presents the development a numerical methodology to determine the mechanical properties of active macro composites (AFC - Active Fiber Composite, or MFC - Macro Fiber Composite), combining the concept of Representative Elementary Volume (REV) with the Finite Element Method (FEM). In the first instance, the theoretical framework associated with the numerical approach employed is presented. Later, numerical models based on unit cell are applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. Finally, numerical results obtained by the proposed methodology are compared to other methods reported in the literature. It appears that the results are very similar to the literature results for square and hexagonal arrangement of fibers with circular geometry, in which case, it was compared numerical with analytical results calculated by Asymptotic Homogenization Method (AHM). After that, the methodology is applied to determine the effective coefficients for square and hexagonal array with square fiber geometry. Employing different fiber volume fractions, it follows that the results obtained by the proposed methodology were compared to analytical results calculated by the Uniform Field Method (UFM). After assessing the potential and limitations of the methodology, either directly, through analytical results, the evaluation took place in the indirect approach. Then, dynamic analyses were performed in order to compare the Frequency Response Functions (FRFs) determined by experimental tests with computational results. Thus, it was used a cantilever beam aluminum structure, which were bonded two piezoelectric patches, one to carry the excitement of the structure and the second to perform the data acquisition. The effective properties determined by the proposed methodology were applied for the dominium established by the piezoelectric patches. The results showed, again, the potential of the proposed methodology. Therefore, the numerical methodology is not only a good alternative for the calculation of effective coefficients of smart composite, but also a tool for the design of smart structures monitored by piezoelectric materials.
3

Desenvolvimento de uma metodologia computacional para determinar coeficientes efetivos de compósitos inteligentes / Development of a computational methodology for determining effective coefficients of the smart composites

Ricardo de Medeiros 15 February 2012 (has links)
O presente trabalho visa empregar uma metodologia numérica para determinar as propriedades macro mecânica de compósitos ativos (AFC - Active Fiber Composite ou MFC - Macro Fiber Composite), combinando o conceito de Volume Elementar Representativo (VER) com o Método dos Elementos Finitos (MEF). Inicialmente, apresenta-se a fundamentação teórica associada à abordagem numérica empregada. Posteriormente, os modelos numéricos desenvolvidos são aplicados na determinação dos coeficientes efetivos de materiais compósitos inteligentes transversalmente isotrópicos com fibras piezelétricas de seção com forma circular e quadrada, respectivamente. Finalmente, os resultados numéricos obtidos pela metodologia proposta são, então, comparados com resultados da literatura. Constata-se que os resultados obtidos são muito semelhantes aos resultados relatados pela literatura para arranjo quadrático e hexagonal com fibra de geometria circular, sendo que neste caso, compararam-se os resultados numéricos com analíticos obtidos através do Método de Homogeneização Assintótica. Em seguida, a metodologia é aplicada para determinação dos coeficientes efetivos para arranjo quadrático e hexagonal com fibra de geometria quadrada. Empregando diferentes frações volumétricas de fibras, os resultados via MEF foram comparados aos resultados analíticos obtidos através do Método dos Campos Uniformes (Uniform Field Method). Após a avaliação das limitações e potencialidades da metodologia, de forma direta, através de resultados analíticos, realizou-se a avaliação da mesma de forma indireta. Para tal, foram realizadas análises dinâmicas visando comparar as Funções de Resposta em Frequência (FRF) experimentais com as obtidas computacionalmente. Dessa forma, utilizou-se uma viga de alumínio estrutural engastada-livre, onde foram colados duas pastilhas piezelétricas, sendo uma para realizar a excitação da estrutura e, a outra para fazer a aquisição dos dados. Os modelos computacionais via MEF empregaram para o domínio das pastilhas, as propriedades efetivas determinadas através da metodologia desenvolvida. Os resultados obtidos demonstraram mais uma vez as potencialidades da metodologia proposta. Assim, conclui-se que a metodologia numérica não é somente uma boa alternativa para o cálculo de coeficientes efetivos de compósitos inteligentes, mas também uma ferramenta para o projeto de estruturas inteligentes monitoradas por materiais piezelétricos. / This work presents the development a numerical methodology to determine the mechanical properties of active macro composites (AFC - Active Fiber Composite, or MFC - Macro Fiber Composite), combining the concept of Representative Elementary Volume (REV) with the Finite Element Method (FEM). In the first instance, the theoretical framework associated with the numerical approach employed is presented. Later, numerical models based on unit cell are applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. Finally, numerical results obtained by the proposed methodology are compared to other methods reported in the literature. It appears that the results are very similar to the literature results for square and hexagonal arrangement of fibers with circular geometry, in which case, it was compared numerical with analytical results calculated by Asymptotic Homogenization Method (AHM). After that, the methodology is applied to determine the effective coefficients for square and hexagonal array with square fiber geometry. Employing different fiber volume fractions, it follows that the results obtained by the proposed methodology were compared to analytical results calculated by the Uniform Field Method (UFM). After assessing the potential and limitations of the methodology, either directly, through analytical results, the evaluation took place in the indirect approach. Then, dynamic analyses were performed in order to compare the Frequency Response Functions (FRFs) determined by experimental tests with computational results. Thus, it was used a cantilever beam aluminum structure, which were bonded two piezoelectric patches, one to carry the excitement of the structure and the second to perform the data acquisition. The effective properties determined by the proposed methodology were applied for the dominium established by the piezoelectric patches. The results showed, again, the potential of the proposed methodology. Therefore, the numerical methodology is not only a good alternative for the calculation of effective coefficients of smart composite, but also a tool for the design of smart structures monitored by piezoelectric materials.

Page generated in 0.0717 seconds