• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouvelle synthèse colloidale de nanoparticules de type olivine pour les accumulateurs au lithium

Dhaybi, Sana 06 1900 (has links) (PDF)
L'augmentation de la consommation mondiale d'énergie électrique constitue un sujet scientifique intéressant pour la mise au point de nouveaux systèmes de stockage d'énergie. Parmi ces systèmes figurent les accumulateurs au lithium qui présentent un grand intérêt en raison de leur grande densité d'énergie massique et volumique. De nombreuses études sont orientées vers la technologie lithium-ion, menées sur les matériaux d'électrode positive (cathode), négative (anode) et les électrolytes. Notre travail vise à étudier l'un des matériaux de cathode les plus prometteurs de la famille des olivines, notamment le LiFeP04, en raison de son faible coût, sa faible toxicité et son potentiel d'opération autour de 3,5 V vs Li/Li+ qui le rend stable dans la majorité des électrolytes usuels. Dans la littérature, les recherches s'orientent vers le matériau composite LiFePO4/C pour contourner le problème de la limitation d'intercalation et de désintercalation du lithium au cours des cyclages, provenant de la faible conductivité électronique et ionique du LiFeP04. Dans cette étude, nous proposons d'obtenir des nanoparticules de LiFePO4/C par une nouvelle voie colloïdale et d'optimiser les performances électrochimiques d'une pile contenant ce matériau de cathode, en étudiant l'influence de l'ajout de carbone sur ses propriétés électrochimiques. Pour ce faire, deux procédures de synthèse (A et B) ont été développées, l'une à deux étapes et l'autre à une seule étape. Les deux procédures consistent à utiliser l'hydrogénophosphate de lithium (LiH2P04) et le chlorure ferreux (FeCl2) comme précurseurs de LiFeP04 tout en optimisant les conditions de préparation. Cette synthèse consiste à solubiliser les deux sels dans un solvant organique polaire, le N-méthylimidazole (NMI). Le précipité obtenu est ensuite recuit sous vide à différentes températures dans le but d'obtenir des nanoparticules de LiFeP04 carbonées, pures et bien cristallisées. Les particules obtenues par les deux procédures ont été caractérisées physico-chimiquement (cristallinité, morphologie, stœchiométrie et composition de surface). La diffraction des rayons X a montré que l'échantillon préparé par la voie A contient des phases secondaires cristallines, la proportion des impuretés diminuant significativement lorsque la température de recuit augmente et atteignant de 3 à 5% à 500°C. Afin d'améliorer les caractéristiques du composé LiFePO4/C, une modification de la méthode de synthèse a été apportée (procédure B). Contrairement à la procédure A, cette nouvelle procédure conduit à la formation de LiFeP04 hautement cristallin exempt d'impuretés. Des particules d'un diamètre moyen de 50 nm, de stœchiométrie Li1,06FeP1,04O4,34 (après recuit sous vide à 550°C), sont obtenues. Ces particules sont extrêmement conductrices (1,4 X 10-3 S/cm à 22°C) grâce à un contenu en carbone de l'ordre de 33% provenant de la dégradation thermique du solvant NMI lors du recuit. Le matériau LiFeP04/C provenant de la procédure B et recuit sous vide à 550°C a été caractérisé en cellule électrochimique et dans des piles bouton. L'influence de l'ajout de noir de carbone au matériau actif sur les performances électrochimiques des cathodes a été étudiée. Les études voltampérométriques ont indiqué une bonne stabilité électrochimique du matériau actif. Des piles bouton de configuration LiFeP04/C-C | LiPF6 1 M-EC/DMC | Li ont été caractérisées en mode galvanostatique et cyclées entre 2,2 et 4,0 V vs Li/Li+ à un régime de courant lent (C/10). L'ajout de 10 % de noir de carbone au matériau de cathode donne une pile plus efficace que celle avec 5%. Les capacités spécifiques correspondant au l2è cycle sont de 42 mAh/g (0% C), 104 mAh/g (5% C) et 157 mAh/g (10% C). Le ratio Décharge/Charge étant de ~ 1,0, cela implique que la quantité d'ions lithium extraite de la structure du matériau lors de la charge est égale à la quantité d'ions lithium insérés lors de la décharge (excellente réversibilité électrochimique). Les capacités obtenues dans ce travail sont généralement plus élevées que celles tirées de la littérature (méthodes de synthèse différentes) pour des piles de composition similaire et avec des taux de charge/décharge semblables. La plus faible dimension des particules de LiFeP04 obtenues dans ce travail contribue certainement à ces résultats. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Phosphate de fer lithié, LiFeP04/C, N-méthylimidazole (NMI), voie colloïdale, accumulateur lithium-ion, cyclages galvanostatiques.
2

Nouvelle méthode d'analyse rapide pour déterminer la capacité de charge du LiFePO₄

Trinh, Ngoc Duc 11 1900 (has links) (PDF)
Avec l'augmentation de la consommation d'énergie, il faut mettre de l'avant tout type d'énergie renouvelable. Cependant, la grande majorité de l'énergie consommée provient des combustibles fossiles, créant une grande quantité de gaz à effet de serre. Les systèmes de stockage permettent d'emmagasiner de l'énergie renouvelable et de pouvoir l'utiliser à bon escient. Plusieurs systèmes ont été développés pour cette fin et l'un d'eux est l'accumulateur (batterie) au lithium. Les accumulateurs lithium-ion sont très présents dans la vie quotidienne, notamment utilisés pour les ordinateurs portables, les téléphones cellulaires, les caméras numériques et les voitures hybrides ou électriques. Les accumulateurs lithium-ion présentent plusieurs avantages incluant une densité d'énergie élevée et une grande sécurité favorisant son utilisation dans les appareils portatifs. Beaucoup de recherches sont effectuées concernant la technologie lithium-ion, dont les matériaux de cathode. De ce lot, le phosphate de fer lithié (LiFePO4) a attiré l'attention de la communauté scientifique et est considéré comme étant l'un des matériaux de la prochaine génération des batteries lithium-ion. Le coût abordable lié à ce composé combiné à la présence abondante de fer contribue à son essor. Le potentiel standard du LiFePO4, ~3,4 V vs. Li/Li+, est plus faible que les matériaux conventionnels comme l'oxyde de cobalt, LiCoO2, mais la présence du fer et la forte liaison phosphate-oxygène sont des facteurs permettant d'accroître les propriétés de sécurité. La particularité de ce composé est la présence de deux phases solides (olivine et hétérosite) lors d'une charge/décharge d'une batterie au lithium. Pour étudier les performances électrochimiques, la méthode utilisée au niveau industriel demeure le cyclage des batteries en mode galvanostatique. Ceci permet d'obtenir la capacité, le nombre d'ampères par gramme de produit par unité de temps. Cependant, le LiFePO4 comporte des limitations autant pour la diffusion des ions de lithium dans sa structure que du transport de charge pour la réaction. Il est nécessaire d'ajouter un matériau conducteur, par exemple du carbone, pour s'assurer de la conductivité électronique lors de la préparation d'une électrode composite. La diminution de la taille des particules améliore la conductivité ionique en diminuant la distance à parcourir lors de la diffusion de Li+ dans la structure. Les performances électrochimiques du matériau actif dépendent aussi de la composition et de la structure de l'électrode composite de la batterie électrochimique. Dans le cadre de ce projet, une nouvelle méthode analytique a été développée pour déterminer la capacité de charge du composé LiFePO4, à la demande de l'industrie. Cette méthode nécessite l'utilisation d'un système électrochimique à trois électrodes d'électrolyse totale. L'oxydation de l'olivine LiFePO4 vers la phase hétérosite FePO4 s'effectue dans une solution organique (carbonate de propylène et LiPF6) avec la présence d'un médiateur redox, le 10-méthylphénothiazine (MPT). Le médiateur redox qui a été préalablement oxydé, possède un potentiel pouvant oxyder les particules de LiFePO4 en suspension et assure le transport de charge à l'électrode de travail. La quantité de charges injectée dans la solution est directement liée à la capacité de charge du matériau. Cette méthode permet donc l'analyse rapide pour obtenir la capacité de charge du LiFePO4, et pouvant être utilisée de façon routinière dans le milieu de l'industrie. Pour démontrer l'efficacité et la stabilité de la cellule électrochimique, une série d'analyses ont été effectuées, prouvant la reproductibilité de la méthode avec un écart-type relatif de 6.8%. Avec le même système électrochimique, au moins dix analyses d'un même échantillon peuvent être évaluées, sans observer une diminution de l'efficacité du signal. La versatilité de la technique a été démontrée par un emploi de divers échantillons. Les échantillons utilisés possèdent des valeurs de capacités différentes, des tailles de particule variées et avec/sans revêtement de carbone. Tous ces échantillons ont pu être analysés par cette méthode, ce qui n'est pas le cas pour la méthode standard employant les batteries électrochimiques. L'aptitude de cette technique à pouvoir être utilisée pour des particules sans revêtement de carbone est très avantageuse pour les analyses en industries. Les nanoparticules peuvent aussi être analysées par cette méthode, ce qui est difficile lors d'une préparation d'une électrode composite. Il faut souvent rajouter du carbone pour s'assurer de la connectivité entre les particules. Les valeurs émanant de la méthode développée ont été comparées avec la technique conventionnelle utilisée autant en industrie qu'en recherche, soit le cyclage galvanostatique de batteries au lithium. Les résultats obtenus par la méthode utilisant un médiateur redox démontrent une valeur de capacité supérieure à ceux observés par les batteries électrochimiques. Cela concorde avec les attentes, puisque le médiateur redox en solution recouvre et réagit complètement avec les particules de LiFePO4 et permet la délithiation complète, ce qui n'est pas observé pour les batteries où la capacité dépend de la structure et de la composition de l'électrode. La caractérisation effectuée par diffraction des rayons X et spectroscopie infrarouge à réflexion totale atténuée sur la poudre récoltée à la fin de l'électrolyse a été effectuée et démontre seulement la présence de la phase hétérosite à la fin de l'électrolyse, confirmant l'oxydation complète du produit de départ. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Batterie lithium-ion, Cathode, LiFePO4, 10-méthylphénothiazine, Électrolyse totale, Capacité de charge
3

Oxydes et oxyfluorures de dérivés graphéniques pour pile au lithium / Graphene derivatives oxides and oxifluorides fot lithium batteries

Mar, Maïmonatou 29 November 2016 (has links)
Les piles au lithium tiennent une place importante dans de nombreuses applications, notamment dans le secteur industriel à forte valeur ajoutée. Les oxyfluorures de graphites et graphènes, ainsi que leurs précurseurs oxydes, ont été identifiés comme des matériaux de cathode pouvant permettre d’augmenter la densité d'énergie de ces piles. Durant cette thèse, afin d’obtenir des nouveaux oxyfluorures de graphite, deux voies de synthèse ont été prospectées. Lors de la synthèse enchainant oxydation de Hummers puis fluoration gaz-solide, le paramètre température d’oxydation a été modulé et a donné lieu à des composés contenant des proportions différentes de fonctions oxygénées de type OH, COOH, COC. Lors de la synthèse débutant par la fluoration, différentes méthodes de fluoration ont été mise en oeuvre faisant agir soit le fluor moléculaire soit le fluor radicalaire à deux échelles de synthèse (laboratoire et micropilote). Une caractérisation minutieuse des matériaux issus de chaque voie, croisant les analyses structurales (DRX, ATG, diffusion Raman...) et analyses chimiques (IR, RMN, XPS...) a permis de cerner les modularités sur les effets de structure et de distribution de fonctions à l'échelle locale. Ce panel de composés a été testé en décharge galvanostatique en pile au lithium afin de corréler activité électrochimique des fonctions et gain en performances. / Primary Lithium Batteries are substantial in many applications, particularly in industrial niche sectors. Graphite oxifluorides and their precursors, graphite oxides, are promising materials for the cathodes. We explored two-step synthesis combining Hummers' oxidation and solid-gas fluorination. Temperature of oxidation was key parameter to control OH, COC and COOH ratio. Direct fluorination and controlled fluorination were processed at laboratory and scaled-up. Because of complexity of the materials and specificity at each scale, we cross-checked the data from several techniques for structure (XRD, TGA, Raman spectroscopy...) and chemistry (IR, MAS NMR, XPS...) for an accurate picture. We tested the broad set of materials. Galvanostatic discharges enabled us to understand the electrochemical activity of functions at stake and key factors of design for better performances.

Page generated in 0.0581 seconds