Spelling suggestions: "subject:"files à combustible SOFC"" "subject:"miles à combustible SOFC""
1 |
Etude du procédé de projection plasma de suspensions pour l'élaboration de piles à combustible à oxyde solideMarchand, Olivier 01 March 2010 (has links) (PDF)
Augmenter la durée de vie des piles à combustible de type SOFC en abaissant leur température de fonctionnement tout en maintenant un prix de fabrication raisonnable est un des enjeux du secteur énergétique. Ces travaux de recherche entrent dans ce cadre par l'utilisation de la projection plasma de suspensions pour fabriquer des couches céramiques ou cermets finement structurées sur support métallique poreux. Dans cet objectif, la compréhension du procédé s'est avérée être une étape indispensable. A cette fin l'utilisation de la Vélocimétrie par Image de Particules spécialement adaptée aux contraintes de la projection plasma a permis une meilleure caractérisation des jets injectés mais aussi une compréhension plus poussée des phénomènes régissant le traitement des particules. Fort de ces informations, les couches composant le cœur de pile ont été élaborées : l'anode et l'électrolyte, constituée respectivement d'un cermet nickel-zircone yttriée et de zircone yttriée et enfin la cathode composée d'un conducteur mixte La2NiO4.
|
2 |
Synthèse de poudres nanocomposites et dépôts de cathodes pour les piles à combustible à température moyenne / Nanocomposite powder synthesis and cathode coating deposition for intermediate temperature solid oxide fuel cellShen, Yan January 2011 (has links)
In this work, nanocomposite cathode powder and nano/micro-structured composite cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs) have been produced using induction plasma spray. Both the suspension plasma spray (SPS) and solution plasma spray (SolPS) method were used. The composite cathode is a mixture of electronic and ionic conductor (ceramic oxide) with enough porosity for the oxygen gas to pass and have the expansion coefficient compatibility with the electrolyte as well. For the purpose of SOFC commercialization, there is a trend to develop SOFCs working at a medium temperature range (600-800[degrees]C). This not only expands the choice of materials and stack geometries that can be used but also reduces system cost and, in principle, decreases the degradation rate of the stack and system components.In order to reduce the polarization resistance of the cathode at this temperature range, two approaches are proposed for cathode fabrication: a) using the materials both with high ionic and electronic conductivities, such as adding a second phase into the original cathode material; b) producing the cathode with homogeneous nano/micro-structure. SolPS method was used to synthesize nanopowders with mixed conductivity. The solution precursor was prepared with the mixed stoichiometric metal nitrates, glycine and distilled water. The crystallinity and morphological features of the nanopowders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). Afterwards, the suspensions, made with ethanol and previously synthesized composite nanopowders were used to deposit cathode coatings by SPS process. The parameters of the SPS processes are optimized to obtain cauliflower microstructure with maximized homogeneity and appropriate open porosity. Cathodes produced by a SPS process were compared to the ones produced using a SolPS process. The coatings were characterized by the high resolution SEM. Symmetrical SPS cathode-electrolyte-cathode was also fabricated to test the polarization resistance of the cathode using electrochemical impedance spectroscopy (EIS). Cathode material nanopowder mixtures of Ce[subscript 0.8]Gd[subscript 0.2]O[subscript 1.9] (GDC) and La[subscript 0.6]Sr[subscript 0.4]Co[subscript 0.2]Fe[subscript 0.8]O[subscript 3] (LSCF6428) with different mass ratio, such as 30wt%:70wt% and 60wt%:40wt% of GDC:LSCF, were obtained. The composite nanopowders exhibit a perovskite structure of LSCF6428 and a fluorite structure of GDC and the two phases are homogeneously dispersed. The nanoparticles are almost globular in shape with a diameter from 10 nm to 60 nm and with BET specific areas around 20 m[superscript 2]/g. Homogeneous cauliflower-structure composite cathodes were obtained by both SPS and SolPS methods. The potentials of these two deposition technologies to provide functionally graded composite cathode with high homogeneity were demonstrated. Compared to SolPS cathodes, the SPS cathodes have finer nanostructure, higher porosity and better distributed pores, which takes advantage of the homogeneously distributed nanosized powders in the precursors. The SPS coatings were expected to have enlarged triple phase boundaries. Dans ce travail, des poudres nanocomposites contenant des phases mélangées nano et microstructurées de cathodes pour les piles à combustible à température moyenne (IT-SOFCs) ont été produits [sic] en utilisant un plasma thermique inductif. Deux techniques ont été utilisées, soit la déposition en utilisant des suspensions (SPS) ou encore en utilisant des solutions (SolPS ou SPPS ). La cathode composite est un mélange de conducteur électronique et de conducteur ionique (oxyde céramique) avec assez de porosité pour que l'oxygène passe et aussi pour assurer la compatibilité des coefficients d'expansion avec l'électrolyte. Afin de permettre la commercialisation des SOFCs, le développement des SOFCs s'oriente vers des piles fonctionnant à une température ambiante moyenne (600-800[degrés]C). Ceci augmente le choix des matériaux et des géometries de pile qui peuvent être employés, réduisant les coûts et, en principe, devrait aussi diminuer le taux de dégradation des composants des piles et des systèmes. Afin de réduire la résistance de polarisation de la cathode à cette gamme de température, on propose deux approches pour la fabrication de la cathode : a) en utilisant les matériaux avec des conductivités ioniques et électroniques élevées, qui peuvent être obtenus en ajoutant une deuxième phase dans la cathode ; b) la synthèse de cathodes avec des morphologies optimisées de nano/microstructure. La méthode SolPS a été employée pour synthétiser des nanopoudres possédant une conductivité mixte. Le précurseur de la solution a été préparé avec des nitrates, la glycine et l'eau distillée stoechiométriques mélangés en métal. La cristallinité et la morphologie des nanopoudres ont été caractérisées par la diffraction de rayon X (DRX), la microscopie électronique à balayage (MEB), la microscopie électronique à transmission (MET) et la spectroscopie à dispersion d'énergie (EDS). Des suspensions, faites avec de l'éthanol et les nanopoudres composites précédemment synthétisées, ont été employées pour déposer des revêtements de cathode par le procede SPS. Les paramètres des procédés SPS ont été optimisés. Des cathodes nanostructurées produites par le procede SPS ont été comparées à celles produites en utilisant le procédé SolPS. Les revêtements ont été caracterisés par un MEB à haute résolution. Des cathode-électrolyte-cathode symétriques ont également été fabriquées pour examiner la résistance de polarisation de la cathode en utilisant la spectroscopie électrochimique d'impédance (EIS). Des mélanges de nanopoudres de cathode de Ce0.8Gd0.201.9 (GDC) et de La0.6Sr0.4Co0.2Fe0.803 (LSCF6428) avec les ratios massiques suivants : 30 - 70 et 60 - 40 % masse de GDC - LSCF, ont été obtenus. Les nanopoudres composites montrent une structure de pérovskite de LSCF6428 et une structure de fluorite de GDC et ces deux phases sont homogènement dispersées. Les nanoparticles [sic] sont presque globulaires avec un diamètre de 10 à 60 nanomètre et avec des surfaces spécifiques autour de 20 m[indice supérieur 2]/g. Des cathodes composites de structure homogène en forme de choux fleur [sic] ont été obtenues par les méthodes de SPS et de SolPS. Les potentiels de ces deux technologies de depôt pour fournir des cathodes composites fonctionnelles à composition gradée et avec une homogénéité élevée ont été démontrés. Comparé aux cathodes produites par SolPS, les cathodes produites par SPS ont une nanostructure plus fine, une porosite élevée et des pores mieux distribués.
|
3 |
Elaboration de matériaux nanostructurés pour piles à combustible SOFC: application à Nd<sub>2</sub>NiO<sub>4+δ</sub> et Ce<sub>1-x</sub>A<sub>x</sub>O<sub>2-y</sub>Mesguich, David 23 June 2010 (has links) (PDF)
Le développement actuel des piles à combustible SOFC fonctionnant à température intermédiaire suppose l'optimisation des méthodes de synthèse et de mise en forme pour les matériaux nouveaux développés au cours des dernières années. En effet, les propriétés électrochimiques de ces dispositifs sont étroitement liées aux caractéristiques des poudres de départ ainsi qu'à la microstructure des électrodes (ou de l'électrolyte) après leur mise en forme. Une amélioration significative des dites propriétés peut être obtenue par la nanostructuration des matériaux. Dans ce contexte, ce travail de thèse est consacré à l'élaboration du matériau de cathode Nd<sub>2</sub>NiO<sub>4+δ</sub> ainsi que du matériau d'électrolyte Ce<sub>1-x</sub>A<sub>x</sub>O<sub>2-δ</sub>. Les méthodes mises en œuvre sont la synthèse de nanopoudres en milieux éthanol/eau supercritiques et par voie pyrosol ainsi que le dépôt de couches minces en milieu CO2 supercritique. Les objets obtenus ont enfin été caractérisés par spectroscopie d'impédance électrochimique afin de quantifier leur performance pour l'application SOFC.
|
4 |
Elaboration de matériaux nanostructurés pour piles à combustible SOFC : application à Nd2NiO4+d et Ce1-xAxO2-y / Elaboration of nanostructured materials for Solid Oxide Fuel Cells : application to Nd2NiO4+d and Ce1-xAxO2-dMesguich, David 23 June 2010 (has links)
Le développement actuel des piles à combustible SOFC fonctionnant à température intermédiaire suppose l'optimisation des méthodes de synthèse et de mise en forme pour les matériaux nouveaux développés au cours des dernières années. En effet, les propriétés électrochimiques de ces dispositifs sont étroitement liées aux caractéristiques des poudres de départ ainsi qu'à la microstructure des électrodes (ou de l'électrolyte) après leur mise en forme. Une amélioration significative des dites propriétés peut être obtenue par la nanostructuration des matériaux. Dans ce contexte, ce travail de thèse est consacré à l’élaboration du matériau de cathode Nd2NiO4+d ainsi que du matériau d'électrolyte Ce1-xAxO2-d. Les méthodes mises en œuvre sont la synthèse de nanopoudres en milieux éthanol/eau supercritiques et par voie pyrosol ainsi que le dépôt de couches minces en milieu CO2 supercritique. Les objets obtenus ont enfin été caractérisés par spectroscopie d'impédance électrochimique afin de quantifier leur performance pour l’application SOFC. / The ongoing development of Intermediate Temperature Solid Oxide Fuel Cells implies the optimization of the synthesis and deposition methods for the new materials developed these past years. Indeed, electrochemical properties of these materials are closely linked to the initial powder characteristics as well as the electrode (or electrolyte) microstructure after deposition. Significant improvement of the aforementioned properties can be obtained via nanostructuration of the materials. Thus, this thesis is dedicated to the synthesis of the cathode material Nd2NiO4+d and the electrolyte material Ce1-xAxO2-d. Methods employed are namely nanopowder synthesis in water/ethanol supercritical mixtures and spray pyrolysis as well as thin film deposition in supercritical fluids. The obtained objects have finally been characterized by electrochemical impedance spectroscopy in order to assess their performance for the SOFC application.
|
Page generated in 0.0566 seconds