• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 1
  • Tagged with
  • 27
  • 27
  • 16
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Tribolayer Formation on Bronze Cu Sn12Ni2 in the Tribological Contact between Cy linder and Cont rol Plate in an Axial Piston Pump with Swashplate Design

Paulus, Andreas, Jacobs, Georg January 2016 (has links)
The present study investigates the f ormation of tribolayers on bronze CuSn12Ni2. Two different test rigs are used, of which one is a sliding bearing test rig in order to perform lubricated thrust bearing tests. Bronze CuSn12Ni2 is used for the sliding elements and the counter body is made of C45 steel. In addition to that, an axial piston pump test rig was used to determine t he transfera bility of the results to th e axial pist on pump. The test conditions are set up in a way t hat the tribological load s in the contacts are similar to each other. Changes in the subsurfa ce morphology and the chemical composition of the tribolayer were analysed using electron pro be micro a nalysis (EPMA), trans mission electron microscopy (TEM), energy dispersive X -ray spectro scopy (EDS) and X-ra y photoelectron spectroscopy (XPS). Focused ion beam (FIB) milling was used to prepare site -specific TE M foils fro m the wear track. The formation of a nano scale tribolayer was associat ed with red uced wear, which leads to low leak age in the a xial piston pump. This tribolayer is enriched with oxygen, sulfur and zinc, which is an effect of tribochemical reactions of environment molecules and surface molecules.
12

Design and Simulation of Digital Radial Piston Pumps Using Externally Actuated Cam Systems

Keith Scott Pate (13174803) 29 July 2022 (has links)
<p>Energy conservation is a growing topic of research within various fields.  Digital Hydraulics is a division of fluid power that focuses on using on/off technology to improve the performance and efficiency of fluid power systems. One significant benefit of Digital Hydraulics is that it has enabled additional control over fluid power systems, which helps achieve component and system level improvements. Conventional radial and inline piston pumps use positive sealing valves, which mitigate leakage losses, compared to port plates commonly seen in variable displacement pumps. By using digitally controlled positive sealing valves on radial and inline piston pumps, leakage losses can be mitigated to develop a more efficient variable displacement pump. This work focuses on the design, modeling, and simulation of a mechanically actuated valving system developed for a commercially available radial piston pump. The design uses a ball screw actuation method to phase the cam during operation, changing the displacement. Using a modeling and simulation software, GT-SUITE, a simulation model was created for the digital pump that shows close correlation to the manufacturer’s data at high pressure. The parameters simulated, 50 – 200 bar, showed that the system could achieve a peak efficiency drop of approximately 11.0% from 87.0% to 76.0% from 100 – 25% displacement simulated at 200 bar and 500rpm. Compared to a typical variable displacement axial piston pump unit, the digital pump showed increased efficiencies across the bandwidth of 35-83% displacement, with a lower overall drop in efficiency across most of its operating conditions. In the comparison used, the pump is outside of its operating range and has not been optimized; thus, the simulation model created in this thesis will be used in the future to optimize the system and evaluate the system's potential performance and feasibility for future prototyping and testing as a proof of concept.  </p>
13

Design and experimental evaluations of a pump-controlled hydraulic circuit

Jalayeri, Ehsan 02 March 2016 (has links)
This thesis presents a novel, low cost, high precision , and efficient design for an electro-hydrostatic circuit for single rod hydraulic cylinders. The design is the main contribution of candidate to fulfill the regiments of PhD degree. The challenge of existing deigns of electro-hydrostatic circuits for single-rod cylinders is using one pump to control the cylinder under switching (resistive-assistive) loads. The proposed circuit utilizes off-the-shelf industrial elements. It uses two counterbalance valves to manage switching loads and one on/off solenoid valve to redirect the differential flow of the single rod cylinder to tank. A set of simulation studies is conducted using Simhydraulic tools of Matlab in order to study performances of the proposed circuit and compare it with existing designs. Pump-controlled hydraulic circuit for double rod cylinders was developed and is widely used by industry. It is used as the benchmark for simulation studies. As well, the proposed circuit and two major existing pump-controlled circuits for single rod cylinders are compared to the benchmark circuit. Evaluations are conducted by comparing chamber pressure responses as well as pressure vs position of the cylinder end-effector for each individual circuit. Results indicate that the proposed circuit performed as well as the benchmark circuit by controlling pressures to both sides of the cylinder at the same time. Moreover, the load in the proposed circuit is more controllable compared to the benchmark circuit. Experimental results, obtained from the developed test rig, validate accuracy of the simulation model. Maximum steady state position error of 0.06 mm applications is experimentally observed when the test rig is tested under different loading conditions with various amplitudes and frequencies. The circuit consumes up to 20% of the energy that is required by a valve controlled circuit given the same sinusoidal tracking signal. The relative efficiency of the proposed circuit over a valve xii controlled circuit depends on the pattern and frequency of the tracking signal. In all the experiments, a simple proportional controller, which uses readings of a linear position transducer, is employed. The use of the proportional controller makes the proposed circuit easy to implement and shows it is good candidate for industrial applications. The accuracy of the position response of the proposed circuit indicates, it is a good candidate for robotic applications too. / May 2016
14

Studie pístového čerpadla s lineárním motorem / Study of plunger pump with linear motor

Machát, Pavel January 2010 (has links)
The aim of this thesis is an engineering design of plunger pump with linear motor. This type of pump is used especially for blood pumping in heart surgery. The theoretical part is focused on distribution of pumps, description of extracorporeal circuit and booster heart history. There are basic calculations derived, which describe plunger pump performance. Then varied designs of plunger pumps follows, which are differed in size, shape and application. Next part includes design of reverse valves and their CFD computation.
15

Studie pístového čerpadla s lineárním motorem / Study of plunger pump with linear motor

Jáchym, Jan January 2011 (has links)
This thesis deals with study and design of plunger pump with linear motor. This pump can be used for blood pumping in heart surgery. The theoretical part of this thesis is focused on description of extracorporeal circuit, heart boosters and artificial heart. This thesis provides an overview of check valves which are used in heart surgery too. Basic equitations for pump design are derived and calculated in this thesis. The pump design and manufacturing by the 3D technology was made by previous results. Finally, in this thesis are compared theoretical results and experimental data.
16

Studie pístového čerpadla s inversním kuličkovým šroubem a zatopeným motorem / Study of plunger pump with inverse ball screw and submersed motor

Švestka, Jiří January 2012 (has links)
This thesis is focused on study of piston pump with ball screw and submersed motor. Theoretic part is about study using pump and ball screw. Equations for description of pump, motor and ball screw are in computation part. And in last part is construction of pump and valve. Valve is computed in CFD.
17

The influence of the swash plate oscillation on pressure ripple in variable displacement axial piston pump

Huang, Xiaochen, Xu, Bing, Zhang, Junhui 25 June 2020 (has links)
The displacement of the variable displacement pumps can be adjusted by changing the swivel angle of the swash plate. In fact, the swivel angle oscillates because of the oscillating torque on the swash plate, which caused by the pressure fluctuation of the piston chamber. The swivel angle is most often considered as a constant value in previous studies. However, the oscillation of the swash plate leads to an additional movement of the piston, which has an impact on the pressure fluctuation and the flow ripple. In this study, an improved model of a self-supplied variable displacement pump is established. The swash plate oscillation under different operating conditions is presented. In order to investigate the effect of the swash plate oscillation on the pressure ripple, a comparison between the case of the fixed swash plate and the oscillated swash plate is conducted. Results show the pressure ripple with an oscillated swash plate shows a smaller pressure ripple. It also shows that the nine pistons and the control mechanism both affect the pressure ripple and flow fluctuation.
18

Wear prediction of piston/cylinder pair in axial piston pump

Lyu, Fei, Zhang, Junhui, Xu, Bing 25 June 2020 (has links)
The piston/cylinder pair is the key lubricating interface of axial piston pumps. It suffers from excessive wear due to the huge lateral force, especially under high output pressure. In order to achieve predictive maintenance, it is significant to detect the performance degradation of the piston/cylinder pair. In this paper, a method to predict the wear of the piston/cylinder pair is proposed. The wear regions and corresponding wear depths under different conditions are investigated. The distributive characteristic parameters of the oil film are obtained, which can reflect the load-bearing and lubrication conditions at each region of the friction pair. Based on the oil film characteristic parameters, the most suitable wear model is chosen to calculate the wear depth, and then the entire wear profile of the piston/cylinder pair is obtained. The experimental investigation is carried out, and the results show that the accuracy of the wear regions and corresponding wear depth prediction is high. This method can be used to pump healthy management and choose the suitable working conditions of the axial piston pump.
19

Development of a lumped parameter model of an aerospace pump for condition monitoring purposes

Mkadara, Geneviève, Maré, Jean-Charles 25 June 2020 (has links)
This paper presents the development of a helicopter axial piston pump model with condition monitoring in mind. Industrial constraints and needs ask for modelling with a lumped-parameter approach and require model architecture to be addressed with care. The aim of the proposed model is to assess the merits of pump leakage monitoring through measurement of case pressure. Once reviewed the state of the art in pump modelling, the slipper/swashplate interface is taken as an example to propose and implement in Simcenter AMESim a variable gap height model. The simulation results show that commonly used lumped-parameter models overestimate leakage. It also points out that average leakage at slipper may reverse at high pump displacement.
20

Assessment of Alternate Viscoelastic Contact Models for a Bearing Interface between an Axial Piston Pump Swash Plate and Housing

Miller, Adam Charles 02 October 2014 (has links)
No description available.

Page generated in 0.0764 seconds