• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Animal Model of Combined Pituitary Hormone Deficiency Disease

Colvin, Stephanie C. 09 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / LHX3 is a LIM-homeodomain transcription factor that has essential roles in pituitary and nervous system development in mammals. Children who are homozygous for recessive mutations in the LHX3 gene present with combined pituitary hormone deficiency disease (CPHD) characterized by deficits of multiple anterior pituitary hormones. Most LHX3 patients also present with additional defects associated with the nervous system including a characteristic limited head rotation and sometimes deafness. However, of the 10 types of LHX3 mutation described to date, one mutation type (W224ter) does not result in the limited head rotation, defining a new form of the disease. W224ter patients have CPHD but do not have nervous system symptoms. Whereas other mutations in LHX3 cause loss of the entire protein or its activity, the W224ter mutation causes specific loss of the carboxyl terminal of the LHX3 protein—a region that we have shown to contain critical regulatory domains for pituitary gene activation. To better understand the molecular and cellular etiology of CPHD associated with LHX3 gene mutations, I have generated knock-in mice that model the human LHX3 W224ter disease. The resulting mice display marked dwarfism, thyroid disease, female infertility, and reduced male fertility. Immunohistochemistry, real-time quantitative polymerase chain reaction (PCR), and enzyme-linked immunosorbant assays (ELISA) were used to measure hormones and regulatory factor protein and RNA levels, an approach which is not feasible with human patients. We have generated a novel mouse model of human pediatric CPHD. Our findings are consistent with the hypothesis that the actions of the LHX3 factor are molecularly separable in the nervous system and pituitary gland.
2

The role of DNA methylation in regulating LHX3 gene expression

Malik, Raleigh Elizabeth 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / LIM homeodomain 3 (LHX3) is an important regulator of pituitary and nervous system development. To date, twelve LHX3 gene mutations have been identified in patients with combined pituitary hormone deficiency disease (CPHD). Understanding the molecular mechanisms governing LHX3/Lhx3 gene regulation will provide critical insights into organ development pathways and associated diseases. DNA methylation has been implicated in gene regulation in multiple physiological systems. This dissertation examines the role of DNA methylation in regulating the murine Lhx3 gene. To determine if demethylation of the Lhx3 gene promoter would induce its expression, murine pre-somatotrope pituitary cells that do not normally express Lhx3 (Pit-1/0 cells) were treated with the demethylating reagent, 5-Aza-2’-deoxycytidine. This treatment lead to activation of the Lhx3 gene and thus suggested that methylation contributes to Lhx3 gene regulation. Proteins that modify chromatin, such as histone deacetylases (HDACs) have also been shown to affect DNA methylation patterns and subsequent gene activation. Pit-1/0 pituitary cells treated with a combination of the demethylating reagent and the HDAC inhibitor, Trichostatin A led to activation of the Lhx3 gene, suggesting crosstalk between DNA methylation and histone modification processes. To assess DNA methylation levels, treated and untreated Pit-1/0 genomic DNA were subjected to bisulfite conversion and sequencing. Treated Pit-1/0 cells had decreased methylation compared to untreated cells. Chromatin immunoprecipitation assays demonstrated interactions between the methyl-binding protein, MeCP2 and the Lhx3 promoter regions in the Pit-1/0 cell line. Overall, the study demonstrates that DNA methylation patterns of the Lhx3 gene are associated with its expression status.

Page generated in 0.0951 seconds