Spelling suggestions: "subject:"planète"" "subject:"planètes""
1 |
Le champ de gravité martien : calcul du tenseur du géopotentiel ainsi que la détermination de la variation de l'ellipsoïde de référence suite à la disparition d'un paléo-océanGratton, Roxanne January 2006 (has links) (PDF)
Dans le cadre de ce mémoire nous nous sommes intéressés au champ de gravité martien. Nous avons utilisé les données du géopotentiel afin de tenter de définir l'ellipsoïde de référence donnant la meilleure approximation de la forme géométrique de la planète. Ensuite, nous avons voulu tester quantitativement si les formes géomorphologiques observées
dans l'hémisphère nord, qui suggèrent la présence d'un paléo-océan sur Mars, sont cohérentes avec les conditions géophysiques qui définissent les lignes de rivage observées
sur Terre. Supposant que la forme de l'ellipsoïde de référence martien a varié au cours du temps, nous avons testé si les formes géomorphologiques possiblement modelées
par un fluide ont enregistré cette déformation. Nous avons aussi calculé et illustré les neuf composantes du tenseur des dérivées secondes du potentiel de gravité afin de déterminer s'il serait pertinent d'envoyer d'un gradiomètre en orbite autour de Mars lors d'une future mission de l'Agence Spatiale Européenne (ESA). Les données du géopotentiel utilisées pour ces calculs ont été obtenues au cours des missions spatiales dirigées par la NASA depuis les années 70. Ces données sont sous forme de coefficients du développement en harmoniques sphériques du potentiel de gravité
et sont disponibles sur le site web de MOLA. Suite au traitement des données nous avons montré qu'un ellipsoïde de référence triaxial représenterait mieux la forme de Mars que l'ellipsoïde biaxial actuel. Ensuite, nous avons conclu qu'un seul des linéaments identifiés comme paléo-lignes de rivage en a les caractéristiques physiques. Nous suggérons donc la possibilité d'au moins un paléo-océan sur Mars, durant le premier milliard d'années suivant sa formation. Cependant, la variation du géopotentiel le long de ce même linéament, suggère que la forme de l'ellipsoïde de référence a changé après la disparition de l'océan. D'autre part, nos calculs des neuf composantes du tenseur des dérivées secondes du géopotentiel nous permettent de conclure que la sensibilité des gradiomètres n'est pas encore suffisante pour fournir une plus grande résolution du champ de potentiel de gravité que les données actuellement acquises par effet Doppler.
|
2 |
Evolution thermique d'un océan de magma primitif en interaction avec l'atmosphère : conditions pour la condensation d'un océan d'eauLebrun, Thomas 04 December 2013 (has links) (PDF)
La recherche de nouvelles formes de vie est une quête passionnante mais quidemande avant tout de comprendre l'origine de l'apparition d'une forme de vie.La seule planète qui abrite la vie à notre connaissance est la Terre. Comprendrepourquoi les autres planètes de notre système solaire n'en abrite pas ou plus estune étude nécessaire pour pouvoir mieux cibler nos cherches de nouvelles vies dansles autres systèmes stellaires. L'objectif de cette thèse est d'apporter des premierséléments de réponse à cette question. Nous nous sommes principalement concentréssur la comparaison d'évolution thermique entre Mars, la Terre et Vénus vers lafin de leur accrétion lors du refroidissement de leur océan de magma. L'évolutionthermique d'océans de magma produits par collision avec des impacteurs géantslors de l'accrétion est supposée dépendre de la composition et de la structure del'atmosphère à travers l'effet de serre du CO2 et H2O relâché par le magma durantsa cristallisation. Afin de contraindre les différentes échelles de temps de refroidissementdu système, nous avons développé un modèle 1-D de convection paramétréd'un océan de magma couplé avec un modèle atmosphérique 1-D radiatif-convectif.Nous avons conduit une étude paramétrique et décris l'influence de plusieurs variablestelles que le contenu initial en volatils, la profondeur initiale de l'océan demagma ou encore la distance planète-soleil. Nos résultats suggèrent que la présenced'une atmosphère de vapeur retarde la fin de la phase d'océan de magma d'environ1 Ma. De plus, nous observons également que la vapeur d'eau condense en un océanaprès 0.1, 1.5 et 10 Ma respectivement pour Mars, la Terre et Vénus. Ce tempsserait virtuellement infini pour une planète de la taille de la Terre située à moins de0.66 ua du soleil. Au regard de ces résultats, nous remarquons que pour la Terre etMars, les échelles de temps de formation d'un océan d'eau sont plus courtes que lagamme de temps entre chaque impacts majeurs. Ceci impliquerait que des océansd'eau successifs peuvent s'être développés durant l'accrétion. En revanche, Vénus,du fait de sa grande proximité avec le seuil de distance au soleil (0.66 ua), pourraitavoir maintenu sa phase d'océan de magma plus longtemps durant l'accrétion.Par la suite, la prise en compte de l'échappement hydrodynamique nous a permisde constater que ce phénomène a très peu d'incidence sur le réservoir global d'eaud'une planète durant la phase d'océan de magma. Cependant, on observe qu'aprèsla condensation de la vapeur d'eau, l'échappement devient de plus en plus efficaceet le réservoir d'eau fini par être totalement évaporé peu de temps avant la fin de lasolidification du manteau. Enfin, nous avons commencé à étudier l'influence d'autresgros impacts durant le refroidissement de l'océan de magma. Les premiers résultatsmontrent que dans le cas de Mars et la Terre, la durée de leur phase d'océan demagma est plus courte que la gamme de temps entre chaque impact majeur. Il en résulte que ces planètes ont dû connaitre une alternance entre phase d'océan demagma et phase d'océan d'eau. Ce phénomène n'a en revanche pas dû avoir lieusur Vénus. En effet, la durée de sa phase d'océan de magma est plus longue que lagamme de temps entre chaque impact majeur. C'est pourquoi, la phase d'océan demagma sur Vénus a dû se prolonger durant toute la phase d'impacts et qu'aucunocéan d'eau n'a pu se former avant la fin de cette période.
|
3 |
Evolution thermique d'un océan de magma primitif en interaction avec l'atmosphère : conditions pour la condensation d'un océan d'eau / Thermal evolution of an early magma ocean in interaction with the atmosphere : conditions for the condensation of water oceanLebrun, Thomas 04 December 2013 (has links)
La recherche de nouvelles formes de vie est une quête passionnante mais quidemande avant tout de comprendre l’origine de l’apparition d’une forme de vie.La seule planète qui abrite la vie à notre connaissance est la Terre. Comprendrepourquoi les autres planètes de notre système solaire n’en abrite pas ou plus estune étude nécessaire pour pouvoir mieux cibler nos cherches de nouvelles vies dansles autres systèmes stellaires. L’objectif de cette thèse est d’apporter des premierséléments de réponse à cette question. Nous nous sommes principalement concentréssur la comparaison d’évolution thermique entre Mars, la Terre et Vénus vers lafin de leur accrétion lors du refroidissement de leur océan de magma. L’évolutionthermique d’océans de magma produits par collision avec des impacteurs géantslors de l’accrétion est supposée dépendre de la composition et de la structure del’atmosphère à travers l’effet de serre du CO2 et H2O relâché par le magma durantsa cristallisation. Afin de contraindre les différentes échelles de temps de refroidissementdu système, nous avons développé un modèle 1-D de convection paramétréd’un océan de magma couplé avec un modèle atmosphérique 1-D radiatif-convectif.Nous avons conduit une étude paramétrique et décris l’influence de plusieurs variablestelles que le contenu initial en volatils, la profondeur initiale de l’océan demagma ou encore la distance planète-soleil. Nos résultats suggèrent que la présenced’une atmosphère de vapeur retarde la fin de la phase d’océan de magma d’environ1 Ma. De plus, nous observons également que la vapeur d’eau condense en un océanaprès 0.1, 1.5 et 10 Ma respectivement pour Mars, la Terre et Vénus. Ce tempsserait virtuellement infini pour une planète de la taille de la Terre située à moins de0.66 ua du soleil. Au regard de ces résultats, nous remarquons que pour la Terre etMars, les échelles de temps de formation d’un océan d’eau sont plus courtes que lagamme de temps entre chaque impacts majeurs. Ceci impliquerait que des océansd’eau successifs peuvent s’être développés durant l’accrétion. En revanche, Vénus,du fait de sa grande proximité avec le seuil de distance au soleil (0.66 ua), pourraitavoir maintenu sa phase d’océan de magma plus longtemps durant l’accrétion.Par la suite, la prise en compte de l’échappement hydrodynamique nous a permisde constater que ce phénomène a très peu d’incidence sur le réservoir global d’eaud’une planète durant la phase d’océan de magma. Cependant, on observe qu’aprèsla condensation de la vapeur d’eau, l’échappement devient de plus en plus efficaceet le réservoir d’eau fini par être totalement évaporé peu de temps avant la fin de lasolidification du manteau. Enfin, nous avons commencé à étudier l’influence d’autresgros impacts durant le refroidissement de l’océan de magma. Les premiers résultatsmontrent que dans le cas de Mars et la Terre, la durée de leur phase d’océan demagma est plus courte que la gamme de temps entre chaque impact majeur. Il en résulte que ces planètes ont dû connaitre une alternance entre phase d’océan demagma et phase d’océan d’eau. Ce phénomène n’a en revanche pas dû avoir lieusur Vénus. En effet, la durée de sa phase d’océan de magma est plus longue que lagamme de temps entre chaque impact majeur. C’est pourquoi, la phase d’océan demagma sur Vénus a dû se prolonger durant toute la phase d’impacts et qu’aucunocéan d’eau n’a pu se former avant la fin de cette période. / The research of new life forms is an exciting quest but requires understandingthe origin of the appearance of a form of life. The only planet that houses life as weknow is the Earth. Understand why the other planets in our solar system do nothouse it, is needed to better target our looking for new lives in other star systems.The objective of this thesis is to provide preliminary answers to this question.We mainly focused on the comparison between thermal evolution of Mars, Earthand Venus to the end of their accretion during their cooling magma ocean. Thethermal evolution of magma oceans produced by collision with giant impactorsduring accretion is expected to depend on the composition and structure of theatmosphere through the greenhouse effect of CO2 and H2O released by the magmaduring its crystallization. In order to constrain the various cooling timescales ofthe system, we developed a 1-D parameterized convection model of a magma oceancoupled with a 1-D radiative-convective model of the atmosphere. We conducted aparametric study and described the influence of several variables such as the initialvolatile inventories, the initial depth of the magma ocean and planet-sun distance.Our results suggest that the presence of a steam atmosphere delays the end ofthe magma ocean phase by about 1 Myr. In addition, we also observe that thewater vapor condenses to an ocean after 0.1, 1.5 and 10 Myr respectively for Mars,Earth and Venus. This time would be virtually infinite for an Earth-sized planetlocated at less 0.66 UA from the sun. In view of these results, we note that for theEarth and Mars, the timescales of the water ocean formation are shorter than timegaps between major impacts. This would imply that successive water oceans mayhave developed during accretion. However, Venus, due to its close proximity to thethreshold distance from the sun (0.66 AU), could have maintained its magma oceanphase longer during accretion. Thereafter, taking into account the hydrodynamicescape permitted us to see that this phenomenon has very little influence on theoverall water tank of a planet during the magma ocean phase. However, we canobserve that after the condensation of the water vapor, the hydrodynamic escapebecomes more efficient and the water tank be completely evaporated shortly beforethe end of the mantle solidification. Finally, we began to study the influence ofother major impacts during the cooling of the magma ocean. The first results showthat in the case of Mars and Earth, the duration of their magma ocean phase isshorter than time gaps between major impacts. In consequently, these planets hadto know an alternation between a phase magma ocean and a ocean water phase. Thisphenomenon does not, however, have taken place on Venus. Indeed, the durationof its magma ocean phase is longer than the time gaps between major impacts.Therefore, the magma ocean phase on Venus had to extend throughout the phaseimpacts and no ocean water has been formed before the end of this period.
|
4 |
Vents et magnétisme des étoiles de type solaire : influence sur la rotation stellaire, la couronne et les (exo) planètes / Winds and magnetism of solar-like stars : influence on stellar rotation, coronal properties and (exo)planetsRéville, Victor 23 September 2016 (has links)
Les étoiles de type solaire génèrent un champ magnétique dans leur enveloppe convective grâce à l'effet dynamo. De l'énergie magnétique est injectée dans leur atmosphère étendue, la couronne, qui est chauffée à quelques millions de Kelvin. Le gradient de pression entre la base de la couronne et le milieu interstellaire produit alors un vent de particules chargées responsable du freinage rotationnel de l'étoile sur la séquence principale. Après une première partie introduisant les concepts fondamentaux de la magnétohydrodynamique stellaire, cette thèse se consacre à l'influence du vent magnétisé sur la rotation stellaire et la couronne. À l'aide d'un ensemble de 60 simulations MHD axisymétriques, nous quantifions en premier lieu l'influence de la topologie magnétique sur le freinage. Nous démontrons l'efficacité d'une nouvelle formulation de freinage qui permet de prendre en compte des topologies arbitrairement complexes grâce au flux ouvert magnétique. Nous proposons ensuite une méthode pour estimer le flux ouvert des étoiles de type solaire à partir de modèles analytiques de reconstruction coronale, qui permettent l'utilisation de cette formulation dans les modèles d'évolution rotationnelle. Enfin, à l'aide de simulations entièrement tridimensionnelles contraintes par des champs magnétiques observés, nous étudions l'évolution des propriétés du vent avec l'âge des étoiles. En modélisant l'évolution de la température et de la densité coronale en fonction du taux de rotation de l'étoile, nous retrouvons les prescriptions usuelles des modèles d'évolution rotationnelle. Les simulations 3D permettent également d'accéder à la structure complexe de la couronne organisée en régions ouvertes et fermées. Nous démontrons également que, pour les étoiles jeunes, la distribution de vitesse du vent est trimodale du fait de l'effet magnéto-centrifuge et de l'expansion superradiale des lignes de champ magnétique.La troisième partie de cette thèse aborde les interactions magnétiques étoile-planète sous deux aspects. Tout d'abord, lorsque la planète est proche, un couplage magnétique permet un échange de moment cinétique entre les deux corps. Nos travaux quantifient pour la première fois ces couples magnétiques en fonction des paramètres stellaires et des paramètres orbitaux de la planète, grâce à des simulations MHD 2D et 3D. Ce couple apparaît comme un facteur non négligeable de la migration de Jupiter chauds vers leur étoile hôte. Puis, dans le cas d'une planète plus lointaine, nous nous intéressons aux émissions radios créées dans les magnétosphères planétaires à travers l'exemple de Mercure, ouvrant la voie à la détection et à la caractérisation de magnétosphères exoplanétaires. / Solar-like stars are believed to generate magnetic fields in their convective envelope through dynamo processes. Magnetic energy is injected in their extended atmosphere, the corona, which is heated up to few million Kelvin. The outward pressure gradient drives a magnetized stellar wind that induces a rotational braking on the star.We first focus on the consequences of this magnetized outflow on stellar rotation. Thanks to 2.5D MHD wind simulations, we quantify the influence of complex topologies of the magnetic field on the efficiency of the braking. We derive a general formulation that accounts for arbitrary complex magnetic topologies using the open magnetic flux. We propose a way to estimate the open magnetic flux for solar-like stars thanks to semi-analytical models, in order to use our formulation in rotational evolution models. We then use 3D simulations constrained by spectropolarimetric maps to study the evolution of stellar winds with age. Our simulations, thanks to prescriptions on the evolution of the coronal base density and temperature, are in good agreement with empirical rotational models. Moreover, we unravel the complex structure of realistic coronae made of dead zones and open regions. We also demonstrate that young and fast rotating stars have a trimodal wind speed distribution due to the magneto-centrifugal effect and superradial flux tube expansion.The last part of this thesis discusses the interaction of stellar winds with planets. We demonstrate that close-in planets, such as hot Jupiters, experience star-planet magnetic interactions that have a significant influence on their migration time scale toward the star. We then quantify the radio emission due to energy transfer between the stellar (or solar) wind and electrons of the planetary magnetospheres through the example of Mercury. This study is a first step toward the characterization of exoplanetary magnetospheres.
|
5 |
Développement du projet SETUP (Simulations Expérimentale et Théorique Utiles à la planétologie) : application à l'étude de la physico-chimie de l'atmosphère de TitanArzoumanian, Emmanuel 02 December 2010 (has links) (PDF)
Le travail de cette thèse s'inscrit dans le cadre du développement du programme S.E.T.U.P. (Simulations Expérimentale et Théorique Utiles à la planétologie) dont l'objectif est d'effectuer des simulations représentatives de l'atmosphère de Titan et de déterminer les processus physico-chimiques qui y sont impliqués. Pour ce faire, un dispositif expérimental combine deux types de dépôts d'énergie (électrons et photons) représentatifs des processus de dissociation des molécules N2 et CH4 qui composent majoritairement l'atmosphère de Titan. De plus, une technique d'analyse par spectroscopie laser doit permettre d'identifier et de quantifier des produits et donc de suivre l'évolution du mélange réactionnel in situ en temps réel.La méthodologie adoptée pour la mise en œuvre des expériences de simulations a été de caractériser l'ensemble des étapes depuis les sources énergétiques jusqu'à l'analyse des produits et de développer les outils de modélisation nécessaires à l'interprétation des expériences.Dans un premier temps, il s'est agit de mieux caractériser les deux types de photolyse du méthane envisagés. En effet, il est prévu d'utiliser soit une lampe UV délivrant un rayonnement à Lyman-α (121,6 nm) soit un laser excimère KrF pulsé délivrant un rayonnement à 248 nm. Ce dernier doit en effet permettre des études cinétiques concernant les espèces à courte durée de vie. Des expériences d'irradiation de CH4 et d'un mélange N2/CH4 aux deux longueurs d'onde ont été menées puis simulées grâce à un modèle 0D.L'analyse fine des résultats issus des irradiations de CH4 à Lyman-α montre que des travaux complémentaires sont nécessaires pour comprendre les différences entre les expériences et le modèle chimique. En particulier, une caractérisation de l'émission de la lampe s'est avérée indispensable et a été réalisée afin d'améliorer la compréhension de la chimie mise en jeu. Les résultats obtenus lors de l'irradiation à 248 nm suggèrent que la source laser utilisée pourrait provoquer l'ionisation de CH4 et induire une chimie ionique qui n'était pas envisagée au départ. Ce type d'irradiation pourrait se révéler intéressant pour étudier les processus ionosphériques de l'atmosphère de Titan. En revanche, cette source doit être abandonnée pour l'étude de la chimie des neutres. Une source pulsée à Lyman-α devra être développée.Dans un deuxième temps, trois types d'expériences préliminaires de simulations de l'atmosphère de Titan ont été effectuées. Afin de mieux comprendre l'importance relative de chaque source énergétique, des expériences dites de " plasma " où N2 et CH4 sont dissociés simultanément dans un plasma crée par décharge microonde, ont tout d'abord été menées. Ensuite, des expériences dites de " post-décharge " où CH4 est introduit dans l'enceinte après la dissociation de N2 par plasma, ont été conduites. Et enfin, des expériences dites de " couplage ", censées mieux représenter les processus de l'atmosphère de Titan où CH4, toujours introduit en post-décharge, est cette fois photodissocié à Lyman-α, ont été réalisées.Lors des expériences " plasma ", dix composés sont identifiés : HCN, NH3, HC3N, C2H2, C2H4, C2H6, C3H4, C4H2, HC5N et C6H2. Leur abondance est globalement en bon accord avec celle déterminée par les observations de la haute atmosphère de Titan dans la zone comprise entre 900 et 1200 km d'altitude validant ainsi le module plasma du dispositif. Lors des expériences " post-décharge " et " couplage ", seuls les composés azotés HCN et NH3 sont formés et cela indépendamment du fait que le CH4 subisse ou pas une irradiation UV. Ce résultat s'explique par le fait que le taux de photodissociation du CH4 se révèle très inférieur à la dissociation de N2 par les électrons, ce qui empêche une complexification chimique des hydrocarbures dans les simulations. Il s'avère donc indispensable de modifier la source de rayonnement à Lyman-α afin d'être beaucoup plus efficace en terme de flux.Les résultats acquis grâce à cette méthodologie " étape par étape " ont permis de mettre en évidence les paramètres qu'il faut impérativement maîtriser pour la mise en œuvre de simulations pertinentes de l'atmosphère de Titan. Ils définissent aussi l'orientation des futurs développements du projet SETUP
|
6 |
Effet de la structure du disque sur la formation et la migration des planètesCossou, Christophe 28 November 2013 (has links) (PDF)
Au delà du système solaire et de ses planètes, nous avons maintenant un catalogue de quasiment 1000 exoplanètes qui illustrent la grande diversité des planètes et des systèmes qu'il est possible de former. Cette diversité est un défi que les modèles de formation planétaire tentent de relever. La migration de type 1 est un des mécanismes pour y parvenir. En fonction des propriétés du disque protoplanétaire, les planètes peuvent s'approcher ou s'éloigner de leur étoile. La grande variété des modèles de disques protoplanétaires permet d'obtenir une grande variété de systèmes planétaires, en accord avec la grande diversité que nous observons déjà pour l'échantillon limité qui nous est accessible. Grâce à des simulations numériques, j'ai pu montrer qu'au sein d'un même disque, il est possible de former des super-Terres ou des noyaux de planètes géantes selon l'histoire de migration d'une population d'embryons.
|
7 |
Etude du Trias de la bordure ouest de la chaine des Grandes Rousses - Alpes françaisesVeillet, Madeleine 06 June 1961 (has links) (PDF)
Pas de résumé
|
8 |
1° sujet : Etude géologique de la région de Saint Laurent du Pont et de la Grande Sûre - Massif de la Chartreuse 2° sujet : le quaternaire des plaines de Biévre-ValloireBravard, Christian 10 January 1968 (has links) (PDF)
Description tectonique , stratigraphique et géomorphologique de cette zone : faille de Voreppe, bassin de St Laurent du Pont, Grande Sûre et vallée du Guiers Mort en Chartreuse . Géomorphologie quaternaire
|
9 |
Composition et température de l'haute atmosphère de Titan à partir des occultations stellaires et solaires mesurées par Cassini-spectrographe d'imagerie ultravioletCapalbo, Fernando Javier, Capalbo, Fernando Javier 26 November 2013 (has links) (PDF)
Ce projet de thèse porte sur l'étude de la haute atmosphère de Titan à partir de mesures en laboratoire de sections efficaces d'absorption et de l'analyse des données de Cassini-UVIS.La caractérisation de l'instrument et des observations effectuées par UVIS était nécessaire. Les données provenant des canaux ultraviolet lointain (FUV) et ultraviolet extrême (EUV) d'UVIS ont été analysées et corrigées des effets instrumentaux. A partir de l'analyse de huit occultations solaires dans l'EUV, les profils de densité volumique de N2 et CH4 ont été déterminés par une méthode d'inversion avec régularisation. Les températures ont ensuite été obtenues à partir des profils de N2 en supposant une haute atmosphère isotherme. Les occultations stellaires dans le FUV ont été modélisés et une technique de détermination des densités caractérisée. La possibilité de détection de différentes molécules (dont certaines n'avaient jamais été observés par cette technique avant) a été analysée. Puis, en utilisant l'algorithme de minimisation de Levenberg-Marquardt, les profils de densité de colonne pour différents hydrocarbures et de profondeurs optiques pour les aérosols ont été obtenus à partir de données simulés. Les densités de colonne ont été inversées avec une procédure de régularisation afin d'obtenir des profils de densité volumique pour les hydrocarbures et des profils d'extinction pour les aérosols. La procédure a finalement été appliquée à deux occultations stellaires mesurées par UVIS. Les hydrocarbures étudiés sont CH4, C2H2, HCN, C2H4, C4H2, HC3N et C6H6.Les profils issus des occultations stellaires et solaires ont été obtenus pour différentes dates et des différents lieux. Les profils et les températures dérivés ont donc été analysés en fonction des variables géographiques et temporelles : latitude, longitude, date d'observation, etc. La variabilité atmosphérique est discutée à la lumière de ces résultats.Le benzène (C6H6), une molécule détectée dans l'atmosphère de Titan, est particulièrement importante car elle est considéré comme intermédiaire entre le gaz et la formation des particules solides. Des mesures de l'absorption du benzène dans le domaine ultraviolet, à des températures qui couvrent une gamme de température allant de l'ambiante à 215 K, ont été réalisées dans différentes installations internationales. A partir de ces mesures, la section efficace d'absorption du benzène a été déterminée et analysée en termes des transitions observées et en fonction de la température de mesure. Ces résultats ont été utilisés dans le calcul d'abondance de C6H6 dans la thermosphère de Titan comme indiqué dans les paragraphes précédents.En résumé, l'analyse des observations UVIS présentées contribuent à la caractérisation de la haute atmosphère à travers des profils de N2, de températures thermosphériques et des profils de différents hydrocarbures et nitrile. Ces données d'observation aideront à contraindre les modèles photochimiques. Les profils d'abondance donnés en fonction de différentes coordonnées géographiques et temporelles pourront être utilisés pour étudier plus avant la variabilité atmosphérique. Les résultats de ce travail aideront donc à la compréhension de la composition et la dynamique de l'haute atmosphère de Titan. Cette connaissance, combinée avec des informations sur la basse atmosphère et la surface de Titan, aidera à comprendre l'évolution de molécules organiques dans ce corps céleste abiotique voisin.Les résultats de ce travail aideront donc à la compréhension de la composition et la dynamique de la haute atmosphère de Titan. Cette connaissance, combinée avec des informations sur la basse atmosphère et la surface de Titan, aidera à comprendre l'évolution de molécules organiques dans ce corps céleste abiotique voisin
|
10 |
Recherche et caractérisation d'exoplanètes par photométrie : développement et exploitation du projet ASTEPCrouzet, Nicolas 03 November 2010 (has links) (PDF)
La photométrie des transits est une méthode puissante pour la détection et la caractérisation des exoplanètes. Le Dôme C, en Antarctique, est un site extrêmement prometteur pour les observations photométriques, grâce à une nuit continue de 3 mois durant l'hiver austral et des conditions atmosphériques très favorables. Le projet ASTEP (Antarctic Search for Transiting ExoPlanets) vise à détecter et caractériser des planètes en transit, ainsi qu'à déterminer les limites de la photométrie dans le visible depuis la station Concordia, au Dôme C. Il se divise en deux phases : ASTEP Sud, un instrument fixe de 10 cm, et ASTEP 400, un télescope pointable de 40 cm. Le travail présenté dans cette thèse est dédié au développement et à l'exploitation du projet ASTEP. Un simulateur photométrique est élaboré, et permet d'identifier les sources de bruit affectant la photométrie, telles que les variations de seeing ou de la forme des PSF (Point Spread Function). Des simulations aboutissent au choix des caméras CCD d'ASTEP. Ces caméras sont alors testées et caractérisées. On présente ensuite ASTEP Sud, un instrument fixe composé d'une lunette de 10 cm et d'une caméra CCD dans une enceinte chauffée, qui pointe en permanence un champ de 3.88°x3.88° centré sur le pôle sud céleste. La stratégie d'observation est validée, et les différents éléments de l'instrument sont choisis. Les paramètres d'observation sont définis à partir d'une étude de la contamination et des tests sur le ciel. ASTEP Sud a fonctionné quasiment en continu durant les hivers 2008, 2009 et 2010. L'analyse préliminaire des données permet de qualifier le Dôme C pour la photométrie : la fraction de temps excellent pour les observations photométriques est comprise entre 56.3 et 68.4 % pour l'hiver 2008 et entre 59.4 et 72.7 % pour l'hiver 2009, ce qui est meilleur que dans les grands observatoires des régions tempérées. Les courbes de lumière des 8000 étoiles du champ sont extraites. Le traitement est en cours d'amélioration pour atteindre une précision permettant d'identifier la signature de transits d'exoplanètes. Le coeur du projet, ASTEP 400, est un télescope de 40 cm entièrement conçu et développé dans le but d'effectuer des observations photométriques de qualité dans les conditions extrêmes de l'hiver antarctique. On présente les différentes études menées par les membres de l'équipe ASTEP (études optiques, mécaniques, thermiques, développement logiciel) ; en particulier, on détaille les simulations photométriques et l'étude du guidage. Après des observations de test à l'Observatoire de Nice, ASTEP 400 est installé à Concordia durant la campagne d'été 2010. Le fonctionnement du télescope est nominal dès le début des observations. La précision photométrique obtenue est équivalente à celle de télescopes de 1.5 à 2 m situés dans des sites tempérés. De plus, l'observation continue pendant 1 mois de planètes à transits connues permet d'atteindre une précision de 200 ppm, inégalée pour des observations photométriques dans le visible depuis le sol. On obtient ainsi une limite supérieure sur la profondeur du transit secondaire, et donc sur la température de brillance de ces planètes dans le visible. En parallèle, le suivi d'alertes microlentilles avec ASTEP 400 permet de compléter les données d'autres télescopes, et de participer à la détection d'objets de type naine brune ou planétaire. Le fonctionnement nominal d'ASTEP 400 durant tout l'hiver 2010 et la qualité des données obtenues confirment le potentiel du Dôme C pour la recherche et la caractérisation de planètes en transits, et pour la photométrie dans le visible en général.
|
Page generated in 0.0395 seconds