Spelling suggestions: "subject:"cplasma actuation"" "subject:"deplasma actuation""
1 |
Flow Control over a Tandem Cylinder using Plasma ActuationLatrobe, Benjamin 01 January 2021 (has links)
Tandem cylinder flow control in the form of dielectric barrier discharge, DBD, plasma actuation on the upstream cylinder is used to control the wake and flow around the downstream cylinder. Twin spanwise-oriented plasma actuators are mounted at ± 80 degrees from the forward stagnation point of the upstream cylinder. The actuators are powered with two different AC voltage levels, low-power forcing and high-power forcing. Flow control experiments are performed at Reynolds number 4,700, and cylinder spacing range 3 > L/D > 5. Results include pressure measurements on the downstream cylinder and wake surveys using Particle Image Velocimetry, PIV. High-power forcing reduces the height between vorticity peaks behind upstream cylinder and, in the case of L=3D, restricts upstream wake from impinging on downstream cylinder.
|
2 |
Magneto-hydrodynamics simulation study of high density thermal plasmas in plasma acceleration devicesSitaraman, Hariswaran 17 October 2013 (has links)
The development of a Magneto-hydrodynamics (MHD) numerical tool to study high density thermal plasmas in plasma acceleration devices is presented. The MHD governing equations represent eight conservation equations for the evolution of density, momentum, energy and induced magnetic fields in a plasma. A matrix-free implicit method is developed to solve these conservation equations within the framework of an unstructured grid finite volume formulation. The analytic form of the convective flux Jacobian is derived for general unstructured grids. A Lower Upper Symmetric Gauss Seidel (LU-SGS) technique is developed as part of the implicit scheme. A coloring based algorithm for parallelization of this technique is also presented and its computational efficiency is compared with a global matrix solve technique that uses the GMRES (Generalized Minimum Residual) algorithm available in the PETSc (Portable Extensible Toolkit for Scientific computation) libraries. The verification cases used for this study are the MHD shock tube problem in one, two and three dimensions, the oblique shock and the Hartmann flow problem. It is seen that the matrix free method is comparatively faster and shows excellent scaling on multiple cores compared to the global matrix solve technique. The numerical model was thus verified against the above mentioned standard test cases and two application problems were studied. These include the simulation of plasma deflagration phenomenon in a coaxial plasma accelerator and a novel high speed flow control device called the Rail Plasma Actuator (RailPAc). Experimental studies on coaxial plasma accelerators have revealed two different modes of operation based on the delay between gas loading and discharge ignition. Longer delays lead to the detonation or the snowplow mode while shorter delays lead to the relatively efficient stationary or deflagration mode. One of the theories that explain the two different modes is based on plasma resistivity. A numerical modeling study is presented here in the context of a coaxial plasma accelerator and the effect of plasma resistivity is dealt with in detail. The simulated results pertaining to axial distribution of radial currents are compared with experimental measurements which show good agreement with each other. The simulations show that magnetic field diffusion is dominant at lower conductivities which tend to form a stationary region of high current density close to the inlet end of the device. Higher conductivities led to the formation of propagating current sheet like features due to greater convection of magnetic field. This study also validates the theory behind the two modes of operation based on plasma resistivity. The RailPAc (Rail Plasma Actuator) is a novel flow control device that uses the magnetic Lorentz forces for fluid flow actuation at atmospheric pressures. Experimental studies reveal actuation ~ 10-100 m/s can be achieved with this device which is much larger than conventional electro-hydrodynamic (EHD) force based plasma actuators. A magneto-hydrodynamics simulation study of this device is presented. The model is further developed to incorporate applied electric and magnetic fields seen in this device. The snowplow model which is typically used for studying pulsed plasma thrusters is used to predict the arc velocities which agrees well with experimental measurements. Two dimensional simulations were performed to study the effect of Lorentz forcing and heating effects on fluid flow actuation. Actuation on the order of 100 m/s is attained at the head of the current sheet due to the effect of Lorentz forcing alone. The inclusion of heating effects led to isotropic blast wave like actuation which is detrimental to the performance of RailPAc. This study also revealed the deficiencies of a single fluid model and a more accurate multi-fluid approach is proposed for future work. / text
|
3 |
Nanosecond Dielectric Barrier Discharge Plasma Actuator Flow Control ofCompressible Dynamic StallFrankhouser, Matthew William January 2015 (has links)
No description available.
|
4 |
Influence on tip leakage flow in a compressor cascade with plasma actuationWang, Haotian January 2019 (has links)
As one of the key components of aero engines, compressor is required to endure higher pressure, possess higher efficiency and wider operating range. Intensive studies have been made on tip leakage flow and researchers find that by reasonably organizing tip leakage flow, aero engines are more likely to achieve better performance and reliability. Conventional flow controlling methods like casing treatment and micro jet could substantially modify tip leakage flow, unfortunately with a price of additional loss, not to mention the difficulty in manufacturing such structure. Whereas plasma actuation flow control method uses plasma actuators, such equipment is easy to build, responses fast and has a wide excitation bandwidth. This method has become a new trend in internal flow active control field. In this research, a phenomenological model is adopted to simulate DBD plasma actuation in the flow field inside a compressor cascade. The aim is to find out how plasma actuation will influence tip leakage flow. Meanwhile possible means to improve plasma actuation performance are discussed. First of all, numerical simulation of flow inside a compressor cascade without plasma actuation is conducted to validate accuracy of the numerical methodology adopted and then determine one numerical approach that satisfies specific needs sufficiently. Meanwhile, influence of casing movement on tip leakage flow as well as possible mechanism of tip leakage vortex core generation is investigated in detail. The results indicate: 1. Generating position of tip leakage vortex moves towards leading edge with increasing moving speed of shroud. 2. As shroud moving speed increases, trajectory of tip leakage vortex moves away from suction side of blade and closely towards shroud. 3. Casing movement tends to transform tip leakage vortex from circular to oval shape due to circumferential shearing. 4. Casing movement has little influence on total pressure field concerning absolute pressure value. While total pressure loss does reduce slightly with increasing moving speed of shroud. 5.Vorticity transport from tip clearance into passage may be contributing significantly to generation of tip leakage vortex inner core. Secondly, a simplified model of DBD plasma actuation based on literature [1] is derived and applied through UDF function of commercial software Fluent into the flow field. Different actuation positions, voltages and frequencies are applied in simulation and compared. After that casing movement is included. Main conclusions are as follow: 6. Plasma actuation shows significant suppressing effect on tip leakage vortex on both size, trajectory and strength. 7. The suppressing effect on tip leakage vortex grows stronger as actuator moves towards leading edge. 8. Increasing actuation voltage results in stronger suppressing effect on tip leakage vortex. 9. Plasma actuation can effectively improve total pressure loss situation near shroud region with increasing actuation power. 10. Increasing actuation frequency results in stronger suppressing effect on tip leakage vortex as well. Additionally, frequency performs slightly better than voltage. 11. Casing movement tends to weaken suppressing effect of tip leakage vortex by plasma actuation. More actuation power is needed to achieve sufficient suppressing effect in real compressors. / Som en av de viktigaste komponenterna i flygmotorer krävs det att kompressorn utsätts för högre tryck, har högre effektivitet och större driftsintervall. Intensiva studier har gjorts om skovlarnas toppspel läckageflöde och man anser att det är mer sannolikt att flygmotorer uppnår bättre prestanda och tillförlitlighet genom att på ett rimligt sätt reglera läckageflödet i toppspelet. Konventionella metoder för reglering av flödet, som behandling av “casing” och mikrojet, skulle kunna ändra läckageflödet avsevärt, men medför tyvärr ytterligare förlust, för att inte tala om svårigheten att tillverka en sådan struktur. Samtidig flödeskontroll med hjälp av plasma aktuatorer som är relativt lätta att bygga, reagerar snabbt och har en bred excitationsbandvid. Denna metod har blivit en ny trend inom det interna flödesaktiva kontrollområdet. I denna forskning antas en modell för att simulera plasmaaktivering av DBD i flödesfältet i en kompressorskaskad. Man försöker ta reda på hur plasmaaktivering påverkar läckageflödet. Möjliga sätt att förbättra effekten av plasmaaktivering diskuteras. För det första genomförs numerisk simulering av flödet i en kompressorskaskad utan plasmaaktivering för att validera noggrannheten i den numeriska metoden. Därefter undersöks i detalj vilken inverkan den relativa rörelsen av ”casing” har på läckageflödet genom toppspelet och mekanismen för toppspelsvirvel analyseras. Resultaten visar: 1. Startposition för läckagevirveln rör sig mot skovelns framkant när man introducerar och ökar den relativa hastigheten för ”casing”. 2. I takt med att den relativa hastigheten ökar, kretsbanan för läckage virveln rör sig bort från skovelns sugsida och närmare mot ”casing”. 3. Den relativa rörelsen tenderar att omvandla virveln från cirkulär till oval form på grund av skjuvkrafter. 4. Den relativa rörelsen av ”casing” påverkar inte det totala tryckfältet när det gäller det absoluta tryckvärdet. Samtidigt som den totala tryckförlusten minskar något med ökad hastighet. 5. Virveltransport från toppspelet till huvudkanalen kan på ett betydande sätt bidra till att skapa virvelns inre kärna. I senare delen av arbetet utvecklas och tillämpas en förenklad modell för plasmaaktivering av DBD baserad på litteratur [1], genom att använda UDF‐funktionen i kommersiell CFD programvara Fluent. Olika aktuatorläge, spänningar och frekvenser prövas i simuleringen och jämförs. De viktigaste slutsatserna är följande: 6. Aktuering av plasma visar en betydande dämpningseffekt på läckagevirveln i toppspelet både va det gäller dess storlek, bana och styrka. 7. Den dämpande effekten på läckagevirveln blir starkare när aktuator monteras närmare skovelns framkant. 8. Ökad aktuatorspänning leder till en starkare dämpande effekt på läckagevirveln. 9. Ökad aktuatorfrekvens leder till starkare dämpningseffekt på läckagevortex också.mDessutom fungerar frekvensen något bättre än spänningen. 10. Den relativa rörelsen av ”casing” försvagar effekten av plasmaaktuering. För att uppnå tillräcklig dämpningseffekt i riktiga kompressorer krävs mer effekt till aktuatorn.
|
5 |
An Investigation of Physics and Control of Flow Passing a NACA 0015 in Fully-Reversed ConditionClifford, Christopher J. 30 December 2015 (has links)
No description available.
|
Page generated in 0.1003 seconds