Spelling suggestions: "subject:"cplasma sintering"" "subject:"deplasma sintering""
1 |
Modélisation du processus thermo-électro-mécanique de frittage flash / Thermal electrical mechanical modeling of Spark Plasma SinteringWollf, Cyprien 29 September 2011 (has links)
Le « Frittage Flash » ou « Spark Plasma Sintering (SPS) » est utilisé pour consolider des poudres en des temps relativement courts (quelques minutes). Ce procédé utilise un haut courant continu pulsé (quelques kA), traversant les parties conductrices du système et générant une montée rapide en température induite principalement par effet Joule. L’application d’un chargement mécanique, via des pistons, et d’une rapide montée en température permet d’obtenir une pièce dense sans grossissement excessif des grains. L’objectif de ce travail a été de proposer une simulation numérique thermo-électro-mécanique du procédé « Frittage Flash » sur ABAQUS, afin de suivre in situ les évolutions de température, de porosité et des contraintes difficilement accessibles expérimentalement. Dans ce travail, un modèle de comportement des corps poreux est proposé. Cette approche est basée sur les modèles micromécaniques de la littérature et modifiés de manière heuristique pour reproduire la densification réelle du matériau pour des porosités comprises entre 0 et 50%. Les simulations thermo-électro-mécanique incluant ce modèle, intègrent la dépendance en porosité et température des paramètres matériaux. Quatre cycles d’élaboration de poudre de nickel ont été réalisés avec différentes histoires de température. Les évolutions de la température et de la porosité calculées ont été confrontées avec des résultats expérimentaux. Des analyses post mortem sur des échantillons densifiés confortent la distribution de la température obtenue par le calcul. Ce travail ouvre de nombreuses perspectives, notamment, la possibilité d’optimiser le procédé / Nowadays, Spark Plasma Sintering (SPS) is used to consolidate powders in a relative short time (few minutes). This process uses a pulsed high DC electrical current (few kA) which flows through the conductive part of the device and generates large heating rate mainly due to Joule effect. The application of an uniaxial pressure via punches combined with a rapid heating allow the production of near net shape specimen. The thermal electrical mechanical numerical simulation of SPS process is a powerful tool to capture in situ evolutions of temperature, porosity and stresses which are difficult to obtain in experiments. In this work, a new constitutive model is presented for the description of the behavior of porous medium. This model is based on original viscoplastic micromechanical models of the literature and modified in a heuristic manner to better reproduce the real densification of sintered material for porosity in the range [0;0,5]. The model has been implemented in ABAQUS software. A thermal electrical mechanical simulation of SPS is performed where the dependence of material parameters on temperature and porosity is taken into account. Four processing cycles of nickel have been conducted with different temperature histories. Calculated porosity and temperature evolutions are compared to experimental results. Post-mortem analyses of the material (grain size, yield stress) confirm the temperature distribution obtained by numerical simulations in the sample made of nickel. This simulation is seen to be able to capture experimental trends. The work will permit in a near future the optimization of the sintering conditions to reach prescribed properties
|
2 |
Desenvolvimento de ZrO2/Al2O3 e ZrO2/Al2O3-NbC usando sinterização convencional e não convencional / Development of ZrO2/Al2O3 and ZrO2/Al2O3-NbC using conventional and non-conventional sinteringSalem, Raphael Euclides Prestes 11 December 2017 (has links)
Os compósitos cerâmicos de alto desempenho têm sido objeto de frequentes estudos nas últimas décadas, visando à melhora das propriedades mecânicas e ao aumento da sua gama de aplicações em produtos tecnológicos. Este trabalho consistiu em estudar a preparação, a sinterização convencional e não convencional e as propriedades mecânicas e tribológicas resultantes de dois sistemas compósitos: t-ZrO2/Al2O3 e t-ZrO2/Al2O3-NbC. No sistema t-ZrO2/Al2O3 foram estudadas as composições de 0, 5 e 15% em volume de Al2O3 usando pós comerciais. No sistema t-ZrO2/Al2O3-NbC, foi usado um pó nanocristalino de Al2O3-NbC, obtido por moagem reativa de alta energia e adicionado na proporção de 5% em volume à matriz de t-ZrO2. Os pós foram prensados uniaxial e isostaticamente e sinterizados em forno convencional e pelas técnicas de flash sintering (FS) (t-ZrO2/Al2O3) e spark plasma sintering (SPS) (t-ZrO2/Al2O3-NbC). Os compósitos t-ZrO2/Al2O3 sinterizados convencionalmente e t-ZrO2/Al2O3-NbC sinterizados convencionalmente e por SPS foram caracterizados por medidas de densidade aparente, dilatometria, microscopia eletrônica de varredura (MEV), e medidas de propriedades mecânicas: dureza, módulo de Young e tenacidade à fratura. Os compósitos t-ZrO2/Al2O3 sinterizados por FS foram caracterizados por medidas de densidade aparente, dilatometria in situ e MEV. Os nanocompósitos de t-ZrO2/Al2O3-NbC foram também caracterizados quanto à resistência ao desgaste pelo método esfera-no-disco, utilizando esferas de Al2O3 e WC-6%Co como contramateriais. Os resultados mostraram que a moagem reativa de alta energia foi completa e efetiva na obtenção de pós nanométricos de Al2O3-NbC, com tamanhos de cristalito de 9,1 nm para Al2O3 e 9,7 nm para o NbC. A desaglomeração posterior à moagem de alta energia foi eficaz na redução do tamanho de aglomerados. Os compósitos t-ZrO2/Al2O3 e t-ZrO2/Al2O3-NbC sinterizados convencionalmente e ZrO2/Al2O3-NbC sinterizados por SPS mostraram alta densificação (>97% DT e boas propriedades mecânicas. Os nanocompósitos de t-ZrO2/Al2O3 sinterizados por FS apresentaram uma densificação ultrarrápida (< 1 min) com retração linear superior às amostras sinterizadas em forno convencional, ocorrente a temperaturas inferiores a 1000°C, com densidades relativas superiores a 90% DT em algumas composições. Os nanocompósitos de t-ZrO2/Al2O3-NbC apresentaram propriedades competitivas entre os compósitos sinterizados convencionalmente e por SPS, com dureza e tenacidade à fratura superiores às da t-ZrO2 monolítica. A resistência ao desgaste desses nanocompósitos sinterizados convencionalmente, no entanto, foi notadamente superior à dos sinterizados por SPS. A oxidação do NbC nos compósitos sinterizados convencionalmente influiu negativamente nas propriedades, levando à sugestão de uma \"janela\" de temperaturas em que a sinterização do nanocompósito de t-ZrO2/Al2O3-NbC seja interessante sem a degradação das propriedades mecânicas. Os resultados permitiram concluir que os materiais estudados apresentam potencial para aplicações industriais que requerem cerâmicas de alto desempenho mecânico e de resistência ao desgaste. / High performance ceramic composites have been the subject of frequent studies in recent decades, aiming at improving mechanical properties and increasing their range of applications in technological products. This work consisted in studying the preparation, the conventional and non-conventional sintering and the mechanical properties resulting from two t-ZrO2 matrix composites: the t-ZrO2/Al2O3 system and the t-ZrO2/Al2O3-NbC system. In the t-ZrO2/Al2O3 system, the compositions of 0, 5 and 15% by volume of Al2O3 using commercial powders were studied, while in the t-ZrO2/Al2O3-NbC system, an Al2O3-NbC nanocrystalline powder obtained by high energy reactive milling, deagglomerated, leached in HCl and added in the proportion of 5% by volume to the t-ZrO2 matrix. The obtained powders were uniaxially and isostatically pressed and sintered in conventional furnace and using flash sintering (t-ZrO2/Al2O3) and spark plasma sintering (SPS) (t-ZrO2/Al2O3-NbC). Conventionally sintered t-ZrO2/Al2O3 and conventionally sintered t-ZrO2/Al2O3-NbC composites were characterized by measurements of apparent density, dilatometry, SEM, and mechanical properties: hardness, Young\'s modulus and fracture toughness. The t-ZrO2/Al2O3 composites sintered by FS were characterized by measurements of apparent density, in situ dilatometry and SEM. t-ZrO2/Al2O3-NbC nanocomposites were also characterized for wear strength by the ball-in-disc method, using Al2O3 and WC-6%Co beads as countermaterials. The results showed that the high energy reactive milling was complete and effective in obtaining nanometric powders of Al2O3-NbC, with crystallite sizes equal to 9.1 and 9.7 nm, for Al2O3 and NbC, respectively. The deagglomeration after high energy reactive milling was effective in reducing the size of agglomerates. Conventionally sintered t-ZrO2/Al2O3 and t-ZrO2/Al2O3-NbC composites and SPS-sintered t-ZrO2/Al2O3-NbC showed high densification (> 97% TD), good dispersion of the inclusions in the matrix and good mechanical properties. The t-ZrO2/Al2O3 nanocomposites sintered by FS presented an ultrafast densification (<1 min) with linear shrinkage superior to the sintered samples in conventional furnace, occurring at temperatures lower than 1000°C, with relative densities higher than 90% TD in some compositions. The t-ZrO2/Al2O3-NbC nanocomposites presented competitive properties between conventionally sintered and SPS-sintered composites with higher hardness and fracture toughness than monolithic t-ZrO2. The wear resistance of these conventionally sintered nanocomposites, however, was markedly higher than those of SPS-sintered ones. The oxidation of NbC in the composites sintered conventionally influenced negatively the properties, leading to the suggestion of a \"window\" of temperatures in which the sintering of the t-ZrO2/Al2O3-NbC nanocomposite is interesting without the degradation of the mechanical properties. The results allowed concluding that the studied materials present potential for industrial applications that require high mechanical performance and wear resistance ceramics.
|
3 |
Mise au point d’un composite à fibre oxyde et matrice d’aluminosilicate de baryum modifiée / Synthesis of a barium aluminosilicate (BaAl2Si2O8) composite reinforced by oxide fibersBillard, Romain 15 December 2015 (has links)
L’intérêt de ces travaux est de proposer un nouveau composite BaAl2Si2O8 (BAS) renforcé par des fibres d’alumine ayant des propriétés physiques similaires tout en étant plus réfractaire que les composites SiO2 / SiO2. La forme cristalline hexagonale du BAS est la forme stable à haute température. Cependant, elle est métastable en dessous de 1590 °C et il est donc nécessaire de la stabiliser pour éviter les transformations cristallines. La stabilisation de la forme hexagonale par substitution atomique, notamment par du rubidium à hauteur de 5 % atomique a été la solution retenue. Concernant le composite à matrice BAS, le choix de fibres d’alumine est motivée par la compatibilité physico-chimique BAS / alumine. Diverses voies d’élaboration de la matrice BAS et du composite BAS / alumine ont été explorées. La voie d’élaboration par « reactive spark plasma sintering » (R-SPS) apporte un gain important en termes de réduction du temps d’élaboration et de rendement. Ce gain de temps évite donc l’exposition du BAS aux hautes températures et le risque de transformation de la phase hexagonale en monoclinique. Cependant la mise en forme par SPS de matériaux oxydes, dont le BAS, est confrontée à l’existence de gradients thermiques importants au sein de l’échantillon. C’est pourquoi, la mise en oeuvre d’un moule chauffant est développée comme une alternative au SPS. Ce système, en cours d’évaluation, devrait permettre l’utilisation de cycles thermiques équivalents à ceux du SPS, tout en limitant fortement les gradients thermiques. / The main purpose of the present work is to propose a new BaAl2Si2O8 (BAS) composite reinforced with alumina fibers exhibiting similar physical properties but a higher refractoriness than SiO2 / SiO2 composites. The hexagonal crystal form of BAS is the stable one at high temperatures. However, it is metastable below 1590 °C and it is therefore necessary to stabilize it in order to prevent crystalline transformations. The stabilization of the hexagonal form by atomic substitution, including rubidium at 5 atomic % has been chosen. Regarding the matrix BAS composite, the alumina fibers selection has been justified by their low physical and chemical reactivity with this material. Several elaboration methods of the BAS matrix and of the BAS / alumina composite have been investigated. The development by "reactive spark plasma sintering" (R-SPS) brings an important benefit in terms of reduced elaboration time and yield. This saving time thus limits the BAS exposure to high temperatures and the risk of transformation into monoclinic. Nevertheless, the SPS shaping of oxide materials, including the BAS, is confronted with the presence of important thermal gradient within the sample. This is why shaping in a heating mold is currently in progress, as an alternative to the SPS. This system should allow the use the same thermal cycles as for SPS, but with lower thermal gradient.
|
4 |
Spark plasma sintering : couplage entre les approches : modélisation, instrumentation et matériaux / Spark plasma sintering : coupling between the approaches of modelling : instrumentation and materialsManière, Charles 16 November 2015 (has links)
Le "Spark Plasma Sintering" est un procédé innovant qui permet de densifier, assembler, forger... tous types de matériaux avec des cinétiques très rapides. Cependant, il nécessite des améliorations pour le contrôle des températures, l'homogénéité microstructurale pour des pièces de formes complexes... et de productivité industrielle. Pour résoudre ces problèmes, un modèle électro-thermo-mécanique-microstructural est identifié : i) pour la partie Thermo-Electrique une instrumentation fine a permis par une approche inverse d'évaluer les résistances de contacts, ii) par essais in-situ de fluage et de compression pour la partie mécanique-microstructurale. Il a permis de trouver des solutions pertinentes pour élaborer des pièces - de microstructure homogène - simultanément en grand nombre (modification du passage du courant électrique) - de formes complexes (intervention de pièces sacrificielles). / The "Spark Plasma Sintering" process allows very high consolidation kinetics (densification, assembly, forging) of materials (powder, porous, nanostructured). However, some difficulties remains on this innovative process, particularly in terms of temperature control, microstructural homogeneity especially for complex shapes ... and industrial productivity. To solve these problems, an electro-thermo-mechanical-microstructural model is identified: i) using a thin instrumentation of the machine for the Thermo-Electric part including a reverse approach to evaluate the contact resistances, ii) by in situ creep and compression tests for mechanical microstructural-part. The resulting model has helped to find solutions for microstructural homogenization of the parts, for simultaneously densify of large numbers of parts (modifying the flow of electric current) and/or complex shapes (intervention sacrificial parts).
|
5 |
Desenvolvimento de ZrO2/Al2O3 e ZrO2/Al2O3-NbC usando sinterização convencional e não convencional / Development of ZrO2/Al2O3 and ZrO2/Al2O3-NbC using conventional and non-conventional sinteringRaphael Euclides Prestes Salem 11 December 2017 (has links)
Os compósitos cerâmicos de alto desempenho têm sido objeto de frequentes estudos nas últimas décadas, visando à melhora das propriedades mecânicas e ao aumento da sua gama de aplicações em produtos tecnológicos. Este trabalho consistiu em estudar a preparação, a sinterização convencional e não convencional e as propriedades mecânicas e tribológicas resultantes de dois sistemas compósitos: t-ZrO2/Al2O3 e t-ZrO2/Al2O3-NbC. No sistema t-ZrO2/Al2O3 foram estudadas as composições de 0, 5 e 15% em volume de Al2O3 usando pós comerciais. No sistema t-ZrO2/Al2O3-NbC, foi usado um pó nanocristalino de Al2O3-NbC, obtido por moagem reativa de alta energia e adicionado na proporção de 5% em volume à matriz de t-ZrO2. Os pós foram prensados uniaxial e isostaticamente e sinterizados em forno convencional e pelas técnicas de flash sintering (FS) (t-ZrO2/Al2O3) e spark plasma sintering (SPS) (t-ZrO2/Al2O3-NbC). Os compósitos t-ZrO2/Al2O3 sinterizados convencionalmente e t-ZrO2/Al2O3-NbC sinterizados convencionalmente e por SPS foram caracterizados por medidas de densidade aparente, dilatometria, microscopia eletrônica de varredura (MEV), e medidas de propriedades mecânicas: dureza, módulo de Young e tenacidade à fratura. Os compósitos t-ZrO2/Al2O3 sinterizados por FS foram caracterizados por medidas de densidade aparente, dilatometria in situ e MEV. Os nanocompósitos de t-ZrO2/Al2O3-NbC foram também caracterizados quanto à resistência ao desgaste pelo método esfera-no-disco, utilizando esferas de Al2O3 e WC-6%Co como contramateriais. Os resultados mostraram que a moagem reativa de alta energia foi completa e efetiva na obtenção de pós nanométricos de Al2O3-NbC, com tamanhos de cristalito de 9,1 nm para Al2O3 e 9,7 nm para o NbC. A desaglomeração posterior à moagem de alta energia foi eficaz na redução do tamanho de aglomerados. Os compósitos t-ZrO2/Al2O3 e t-ZrO2/Al2O3-NbC sinterizados convencionalmente e ZrO2/Al2O3-NbC sinterizados por SPS mostraram alta densificação (>97% DT e boas propriedades mecânicas. Os nanocompósitos de t-ZrO2/Al2O3 sinterizados por FS apresentaram uma densificação ultrarrápida (< 1 min) com retração linear superior às amostras sinterizadas em forno convencional, ocorrente a temperaturas inferiores a 1000°C, com densidades relativas superiores a 90% DT em algumas composições. Os nanocompósitos de t-ZrO2/Al2O3-NbC apresentaram propriedades competitivas entre os compósitos sinterizados convencionalmente e por SPS, com dureza e tenacidade à fratura superiores às da t-ZrO2 monolítica. A resistência ao desgaste desses nanocompósitos sinterizados convencionalmente, no entanto, foi notadamente superior à dos sinterizados por SPS. A oxidação do NbC nos compósitos sinterizados convencionalmente influiu negativamente nas propriedades, levando à sugestão de uma \"janela\" de temperaturas em que a sinterização do nanocompósito de t-ZrO2/Al2O3-NbC seja interessante sem a degradação das propriedades mecânicas. Os resultados permitiram concluir que os materiais estudados apresentam potencial para aplicações industriais que requerem cerâmicas de alto desempenho mecânico e de resistência ao desgaste. / High performance ceramic composites have been the subject of frequent studies in recent decades, aiming at improving mechanical properties and increasing their range of applications in technological products. This work consisted in studying the preparation, the conventional and non-conventional sintering and the mechanical properties resulting from two t-ZrO2 matrix composites: the t-ZrO2/Al2O3 system and the t-ZrO2/Al2O3-NbC system. In the t-ZrO2/Al2O3 system, the compositions of 0, 5 and 15% by volume of Al2O3 using commercial powders were studied, while in the t-ZrO2/Al2O3-NbC system, an Al2O3-NbC nanocrystalline powder obtained by high energy reactive milling, deagglomerated, leached in HCl and added in the proportion of 5% by volume to the t-ZrO2 matrix. The obtained powders were uniaxially and isostatically pressed and sintered in conventional furnace and using flash sintering (t-ZrO2/Al2O3) and spark plasma sintering (SPS) (t-ZrO2/Al2O3-NbC). Conventionally sintered t-ZrO2/Al2O3 and conventionally sintered t-ZrO2/Al2O3-NbC composites were characterized by measurements of apparent density, dilatometry, SEM, and mechanical properties: hardness, Young\'s modulus and fracture toughness. The t-ZrO2/Al2O3 composites sintered by FS were characterized by measurements of apparent density, in situ dilatometry and SEM. t-ZrO2/Al2O3-NbC nanocomposites were also characterized for wear strength by the ball-in-disc method, using Al2O3 and WC-6%Co beads as countermaterials. The results showed that the high energy reactive milling was complete and effective in obtaining nanometric powders of Al2O3-NbC, with crystallite sizes equal to 9.1 and 9.7 nm, for Al2O3 and NbC, respectively. The deagglomeration after high energy reactive milling was effective in reducing the size of agglomerates. Conventionally sintered t-ZrO2/Al2O3 and t-ZrO2/Al2O3-NbC composites and SPS-sintered t-ZrO2/Al2O3-NbC showed high densification (> 97% TD), good dispersion of the inclusions in the matrix and good mechanical properties. The t-ZrO2/Al2O3 nanocomposites sintered by FS presented an ultrafast densification (<1 min) with linear shrinkage superior to the sintered samples in conventional furnace, occurring at temperatures lower than 1000°C, with relative densities higher than 90% TD in some compositions. The t-ZrO2/Al2O3-NbC nanocomposites presented competitive properties between conventionally sintered and SPS-sintered composites with higher hardness and fracture toughness than monolithic t-ZrO2. The wear resistance of these conventionally sintered nanocomposites, however, was markedly higher than those of SPS-sintered ones. The oxidation of NbC in the composites sintered conventionally influenced negatively the properties, leading to the suggestion of a \"window\" of temperatures in which the sintering of the t-ZrO2/Al2O3-NbC nanocomposite is interesting without the degradation of the mechanical properties. The results allowed concluding that the studied materials present potential for industrial applications that require high mechanical performance and wear resistance ceramics.
|
6 |
Effect of electric current on ceramic processingSaunders, Theo Graves January 2017 (has links)
This work was on the effect of electric current on the processing of ceramics. The focus was on electromigration/electrochemistry and plasma effects. While there is no solid evidence that there is plasma in Spark Plasma Sintering, (SPS), newer techniques e.g. flash, use different conditions so there is an interest in understanding the conditions under which a plasma forms. The minimum arcing voltage was found from literature to be from 10-15V for materials of interest. This is above that found in SPS (10V). However, due to the many contact points in a powder compact much higher voltages (50V) were required in practical experiments. Optical spectroscopy was used to verify the formation of a plasma, and emission peaks from the powder compact material were visible implying they were vaporised and formed the plasma. Electromigration was exploited to alter the oxidation of zirconium diboride, by passing current through the oxide layer (120μm zirconia base grown at 1200°C) oxygen could be pumped either away or toward the diboride bulk. Small cubes (3mm) of diboride had platinum foil electrodes applied on both sides and oxidation was performed at 1400°C for 5hr. Without a field the oxide grew to 360μm, by applying 10V and 100mA the oxide grew to 150μm under the +ve electrode but 1400μm under the -ve electrode. Electrochemical reduction was believed to have occurred due to the electrical properties of the material changing during oxidation and visible blackening of the oxide. Combining the techniques from both earlier works, a contactless flash sintering setup was developed. This used two plasma arcs as electrodes to heat and pass current through the sample. Various materials, currents and times were used, but the best result was with SiC:B4C which was sintered in 3s with 6A, the microstructure showed sharp grains, no segregation and limited grain growth ( initially 0.7μm SiC and 0.5μm B4C, this grew to 1.1μm and 1.4μm). This was the first recorded case of contactless flash sintering and the technique has the potential to sinter ceramics in a continuous manner.
|
7 |
Tribological Behavior of Spark Plasma Sintered Tic/graphite/nickel Composites and Cobalt AlloysKinkenon, Douglas 12 1900 (has links)
Monolithic composites are needed that combine low friction and wear, high mechanical hardness, and high fracture toughness. Thin films and coatings are often unable to meet this engineering challenge as they can delaminate and fracture during operation ceasing to provide beneficial properties during service life. Two material systems were synthesized by spark plasma sintering (SPS) and were studied for their ability to meet these criteria. A dual hybrid composite was fabricated and consisted of a nickel matrix for fracture toughness, TiC for hardness and graphite for solid/self‐lubrication. An in‐situ reaction during processing resulted in the formation of TiC from elemental Ti and C powders. The composition was varied to determine its effects on tribological behavior. Stellite 21, a cobalt‐chrome‐molybdenum alloy, was also produced by SPS. Stellite 21 has low stacking fault energy and a hexagonal phase which forms during sliding that both contribute to low interfacial shear and friction. Samples were investigated by x‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x‐ray spectroscopy (EDS), and electron back‐scattered diffraction (EBSD). Tribological properties were characterized by pin on disc tribometry and wear rates were determined by profilometry and abrasion testing. Solid/self‐lubrication in the TiC/C/Ni system was investigated by Raman and Auger mapping. A tribofilm, which undergoes a stress‐induced phase transformation from polycrystalline graphite to amorphous carbon, was formed during sliding in the TiC/C/Ni system that is responsible for low friction and wear. TiC additions help to further decrease wear. Stellite 21 was also found to exhibit acceptably low friction and wear properties arising from the presence of Cr23C6 in the matrix and work hardening of the cobalt and chromium during sliding.
|
8 |
Desenvolvimento de um processo de sinterização a plasma do alumínio utilizando gaiola catódicaGarcia, Guilherme Santos January 2016 (has links)
Este trabalho teve por objetivo desenvolver um processo de sinterização a plasma utilizando gaiola catódica para a sinterização de amostras de alumínio, para atmosferas de argônio, hidrogênio e nitrogênio. Avanços recentes na sinterização a plasma motivaram a investigação sobre seus benefícios para o alumínio e se a técnica de tela ativa, em particular com o uso de gaiola catódica, é capaz de contornar alguns problemas encontrados na sinterização deste material, como a presença de uma camada passiva de óxido e a expansão volumétrica após a sinterização para certos parâmetros de processo. A sinterização foi realizada em três processos: convencional, plasma direto e plasma com gaiola catódica. Para o processo convencional utilizou-se atmosferas de argônio e nitrogênio e, para os processos a plasma, utilizou-se atmosferas de argônio, hidrogênio e nitrogênio. Houve queda na densificação média após a sinterização em todos os processos. Tanto o processo a plasma direto e com gaiola catódica resultaram na menor queda de densificação. A atmosfera de nitrogênio mostrou-se a mais efetiva nos processos avaliados, indo ao encontro com o reportado na literatura consultada. Houve aparente endurecimento superficial das amostras sinterizadas a plasma direto. As amostras sinterizadas a plasma com gaiola catódica obtiveram homogeneidade nos valores de microdureza superficial e transversal entre as atmosferas, concordando com o esperado do uso desta técnica. O processo a plasma direto produziu amostras com maior rugosidade em comparação com os outros processos, não havendo influência significativa da atmosfera de sinterização neste aspecto. Foi detectada a presença de zinco na superfície de amostras provenientes do processo convencional com nitrogênio e do processo a plasma com gaiola catódica utilizando argônio e nitrogênio, sendo confirmado pela análise química. Houve formação de nitreto de alumínio apenas no processo convencional com nitrogênio. O processo a plasma com gaiola catódica mostrou-se o mais promissor por apresentar bons resultados em relação aos obtidos nos outros processos avaliados e por ser capaz de preservar a integridade superficial das amostras. É possível promover a melhora das propriedades superficiais do alumínio com o uso de gaiola catódica através de tratamentos termoquímicos concomitantes com a sinterização, tendo em vista os benefícios relatados na literatura. / This study aimed to develop a plasma sintering process using cathodic cage for sintering aluminum samples for argon, hydrogen and nitrogen atmospheres. Recent advances in plasma sintering motivated the research into its benefits for the aluminum and if the active screen technique, in particular the use of cathodic cage, can overcome some problems encountered in the sintering of this material, as the presence of a passive oxide layer and volumetric expansion after sintering for certain process parameters. Sintering was carried out in three processes: conventional, direct plasma and plasma with cathodic cage. For the conventional process was used argon and nitrogen atmospheres and for the plasma processing was used argon, hydrogen and nitrogen atmospheres. There was a decrease in average densification after sintering in all processes Both the direct plasma and cathodic cage plasma processes resulted in the smallest drop of densification. The nitrogen atmosphere proved to be the most effective in al processes evaluated, meeting with the reported in the literature. There was apparent superficial hardening of the samples sintered in direct plasma. Samples sintered in cathodic cage plasma obtained homogeneity in values of surface and cross section hardness between the atmospheres, according to the expected use of this technique. The direct plasma process produced samples with higher surface roughness compared with other processes, with no apparent influence of the atmosphere in this respect. It was detected the presence of zinc in the sample surface from the conventional process with nitrogen and cathodic cage plasma process with argon and nitrogen being confirmed by chemical analysis. The phase analysis on the sintered samples with nitrogen accused the formation of aluminum nitride for the conventional process. The cathodic cage plasma process proved to be the most promising for showing good results compared to those obtained in the other processes evaluated and to be able to preserve the surface integrity of the samples. It is possible to promote the improvement of the surface properties of aluminum with the use of active screen via thermochemical treatments concomitant with the sintering, in view of the benefits reported in the literature.
|
9 |
Processing-Structure Relationships of Reactive Spark Plasma Sintered Diamond CompositesGarcia, Christian 08 1900 (has links)
Traditional lightweight armor ceramics such as boron carbide (B4C) and silicon carbide (SiC) are used alone or together in varying amounts to create monolithic protective plates. These materials exhibit relatively small differences in hardness, flexure strength, and fracture toughness. Many of the routes taken during the synthesis of the powder and sintering of the plates using traditional ceramic processing techniques have long processing times, tend to leave asperities within the microstructure, and have unwanted secondary phases that lower the performance of these materials. In lieu of the incremental changes in the above properties, it is thought that adding diamond particulates to the ceramic matrix will dramatically improve the mechanical properties and overall performance. With the reduced cost of synthetic diamond and the commercial development of more rapid spark plasma sintering (SPS), this work develops a novel reactive SPS process to fabricate near fully dense SiC-TiC-diamond composites at various processing temperatures with minimal graphitization and full adhesion to the ceramic matrix. It was found that samples with up to ~97% theoretical density can be fabricated with no quantifiable graphite content within the characterization ability using advanced X-ray diffraction and microscopy techniques.
|
10 |
Desenvolvimento de um processo de sinterização a plasma do alumínio utilizando gaiola catódicaGarcia, Guilherme Santos January 2016 (has links)
Este trabalho teve por objetivo desenvolver um processo de sinterização a plasma utilizando gaiola catódica para a sinterização de amostras de alumínio, para atmosferas de argônio, hidrogênio e nitrogênio. Avanços recentes na sinterização a plasma motivaram a investigação sobre seus benefícios para o alumínio e se a técnica de tela ativa, em particular com o uso de gaiola catódica, é capaz de contornar alguns problemas encontrados na sinterização deste material, como a presença de uma camada passiva de óxido e a expansão volumétrica após a sinterização para certos parâmetros de processo. A sinterização foi realizada em três processos: convencional, plasma direto e plasma com gaiola catódica. Para o processo convencional utilizou-se atmosferas de argônio e nitrogênio e, para os processos a plasma, utilizou-se atmosferas de argônio, hidrogênio e nitrogênio. Houve queda na densificação média após a sinterização em todos os processos. Tanto o processo a plasma direto e com gaiola catódica resultaram na menor queda de densificação. A atmosfera de nitrogênio mostrou-se a mais efetiva nos processos avaliados, indo ao encontro com o reportado na literatura consultada. Houve aparente endurecimento superficial das amostras sinterizadas a plasma direto. As amostras sinterizadas a plasma com gaiola catódica obtiveram homogeneidade nos valores de microdureza superficial e transversal entre as atmosferas, concordando com o esperado do uso desta técnica. O processo a plasma direto produziu amostras com maior rugosidade em comparação com os outros processos, não havendo influência significativa da atmosfera de sinterização neste aspecto. Foi detectada a presença de zinco na superfície de amostras provenientes do processo convencional com nitrogênio e do processo a plasma com gaiola catódica utilizando argônio e nitrogênio, sendo confirmado pela análise química. Houve formação de nitreto de alumínio apenas no processo convencional com nitrogênio. O processo a plasma com gaiola catódica mostrou-se o mais promissor por apresentar bons resultados em relação aos obtidos nos outros processos avaliados e por ser capaz de preservar a integridade superficial das amostras. É possível promover a melhora das propriedades superficiais do alumínio com o uso de gaiola catódica através de tratamentos termoquímicos concomitantes com a sinterização, tendo em vista os benefícios relatados na literatura. / This study aimed to develop a plasma sintering process using cathodic cage for sintering aluminum samples for argon, hydrogen and nitrogen atmospheres. Recent advances in plasma sintering motivated the research into its benefits for the aluminum and if the active screen technique, in particular the use of cathodic cage, can overcome some problems encountered in the sintering of this material, as the presence of a passive oxide layer and volumetric expansion after sintering for certain process parameters. Sintering was carried out in three processes: conventional, direct plasma and plasma with cathodic cage. For the conventional process was used argon and nitrogen atmospheres and for the plasma processing was used argon, hydrogen and nitrogen atmospheres. There was a decrease in average densification after sintering in all processes Both the direct plasma and cathodic cage plasma processes resulted in the smallest drop of densification. The nitrogen atmosphere proved to be the most effective in al processes evaluated, meeting with the reported in the literature. There was apparent superficial hardening of the samples sintered in direct plasma. Samples sintered in cathodic cage plasma obtained homogeneity in values of surface and cross section hardness between the atmospheres, according to the expected use of this technique. The direct plasma process produced samples with higher surface roughness compared with other processes, with no apparent influence of the atmosphere in this respect. It was detected the presence of zinc in the sample surface from the conventional process with nitrogen and cathodic cage plasma process with argon and nitrogen being confirmed by chemical analysis. The phase analysis on the sintered samples with nitrogen accused the formation of aluminum nitride for the conventional process. The cathodic cage plasma process proved to be the most promising for showing good results compared to those obtained in the other processes evaluated and to be able to preserve the surface integrity of the samples. It is possible to promote the improvement of the surface properties of aluminum with the use of active screen via thermochemical treatments concomitant with the sintering, in view of the benefits reported in the literature.
|
Page generated in 0.1084 seconds