Spelling suggestions: "subject:"cplasma thermique induction"" "subject:"deplasma thermique induction""
1 |
Single-walled carbon nanotubes produced by induction thermal plasma : cytotoxicity evaluation of the feedstock materials and the final product for a potential bone application / Nanotubes de carbone mono-parois produits par plasma thermique inductif : évaluation de la cytotoxicité des matières premières et du produit final, pour une application osseuse potentielleAlinejad, Yasaman January 2013 (has links)
Résumé : L'un des problèmes les plus difficiles auquel les technologies liées aux nanomatériaux font face est l'impact qu'elles ont sur la santé humaine et l'environnement. Il est donc primordial d'étudier les effets toxicologiques de ces technologies dont l'utilisation est très répandue dans divers domaines d'application. Par conséquence, dans ce projet, la cytotoxicité des matériaux présents dans la synthèse de nanotubes de carbone mono-parois (SWCNTs) par plasma thermique inductif (des matières premières au produit final) a été évaluée. Tout d'abord, l'influence du procédé plasma thermique inductif sur les propriétés physico-chimiques et cytotoxiques des matières premières (les catalyseurs commerciaux Co, Ni, Y203, Mo et le noir de carbone) a été déterminée. Un effet cytotoxique plus important a ainsi été révélé pour le Co commercial. De plus, bien que le procédé de plasma affecte les propriétés physico-chimiques de chaque catalyseur, seule la cytotoxicité du Ni a augmenté. La comparaison des particules de Ni après traitement par plasma avec les nanoparticules de Ni commerciales, a révélé que ces particules ayant pourtant une surface similaire avaient des cytotoxicités différentes. De plus, la toxicité des catalyseurs n'était pas principalement due à la libération d'ions. Afin d'évaluer la capacité du procédé de plasma thermique inductif à synthétiser des SWCNTs de haute qualité en utilisant des catalyseurs non toxiques, les effets du type et de la quantité de trois mélanges de catalyseurs (Ni-Y203, Ni-Co-Y203, et Ni-Mo-Y203) sur la production de SWCNTs ont été examinés. Les calculs thermodynamiques, en phase gazeuse et dans la phase de solution liquide, ont également été réalisés. Les résultats ont montré que le type de catalyseur affecte la qualité des SWCNTs et une qualité similaire peut être produite lorsque la même quantité de Co a été remplacée par le Ni. L'influence des SWCNTs produits avec trois mélanges de catalyseurs sur le comportement des préostéoblastes marins MC3T3-E I a été évaluée. Les SWCNTs ont été ajoutés sur les cellules attachées ou les cellules ont été ensemencées sur des plaques recouvertes de SWCNTs. Les SWCNTs ajoutés sur les cellules attachées affectent considérablement la viabilité cellulaire. Toutefois, la viabilité des cellules ensemencées sur les SWCNTs a seulement légèrement diminué à 24 h, même pour celles ensemencées sur les SWCNTs produits avec Ni-Co-Y203. De plus, les cellules peuvent proliférer en présence des SWCNTs dans les 48 h. Ainsi, sauf perturbation mécanique membranaire, ces SWCNTs ne semblent pas induire de cytotoxicité sévère sur les préostéoblastes. Les SWCNTs ont donc été purifiés et leur influence sur la prolifération des préostéoblastes, l'activation de la voie des BMPs ou Smad et la différenciation ostéoblastiques induites par l'addition de BMP-2 et BMP-9 a été étudiée. Le prétraitement des cellules par des SWCNTs pendant 24 h a accéléré l'activation des Smad1/518 induite par les BMPs. Après 72 h d'incubation avec BMP-2 ou BMP-9, les préostéoblastes prétraités avec des SWCNTs exprimaient des gènes codant pour des marqueurs ostéogéniques comme ostérix et octéocalcine et présentaient une forte activité de la phosphatase alcaline. Fait intéressant, la BMP-9 a favorisé la différenciation des préostéoblastes prétraités avec les SWCNTs de manière plus importante que la BMP-2. Par conséquent, la combinaison de la BMP-9 avec les SWCNTs semble être une voie prometteuse pour ta régénération osseuse. // Abstract : One of the most challenging issues that the technologies related to nanomaterials face is the impact they have on human health and environment. It is therefore of great importance to investigate the toxicological impacts of these technologies prior to their widespread utilization in different fields of application. Therefore, in this study, the cytotoxicity of the materials present throughout the process of single-walled carbon nanotubes (SWCNTs) synthesis by induction thermal plasma (from the feedstock materials to the final product) was evaluated. First of all, the influence of the induction thermal plasma process on the physico-chemical and cytotoxic properties of feedstock materials (i.e. commercial Co, Ni, Y203, Mo catalysts and carbon black) was investigated. The strongest cytotoxicity was observed for commercial Co compared to other catalysts. Although the thermal plasma process affected the properties of all catalysts, only the cytotoxicity of Ni was increased. Comparing the properties and cytotoxicity of the plasma treated Ni particles with commercial Ni nanoparticles revealed that the particles with similar surface area had different cytotoxicities. Plus, the observed cytotoxicity of the catalysts was not mainly due to the release of ions. In order to evaluate the capacity of the RF induction thermal plasma process to produce high quality SWCNTs using non-toxic catalysts, the effects of the type and quantity of three catalyst mixtures (Ni-Y203, Ni-Co-Y203, and Ni-Mo-Y203) on SWCNTs synthesis were examined. Thermodynamic calculations, in gas and particularly in liquid solution phases, were also performed. The results showed that catalyst type affected the quality of the SWCNT final product and similar quality SWCNTs was produced when the same amount of Co was replaced by Ni. Then, to investigate the cytotoxicity of the SWCNTs produced with the three catalyst mixtures, their effect was evaluated on the behavior of murine MC3T3-E1 preosteoblasts. Either SWCNTs were added on the attached cells or cells were seeded on the SWCNT-covered culture plates. SWCNTs which were added on the attached cells reduced cell viability drastically in a dose-dependent manner. However, the viability of the cells seeded on SWCNTs was only slightly decreased at 24 h, even on those produced with Ni-Co-Y203. Moreover, cells could proliferate within 48 h. Thus, except mechanical membrane disturbance, thermal plasma grown SWCNTs seemed to induce no severe cytotoxicity on MC3T3-El preosteoblasts. Consequently, SWCNTs were purified and their influence on the viability and proliferation of MC3T3-El preosteoblasts was determined. The impact of SWCNTs on Smad activation and cell differentiation induced by BMP-2 and BMP-9 was also studied. SWCNTs pm-treatment accelerated the Smadl/5/8 activation induced by both BMP-2 and BMP-9. It did not reduce the viability of preosteoblasts but slightly affected their proliferation at 48 h. Furthermore, after 72 h incubation with BMP-2 or BMP-9, preosteoblasts pm-treated with SWCNTs for 24 h could express genes encoding osteogenic markers such as osterix and osteocalcin and showed high alkaline phosphatase activity. Interestingly, BMP-9 favored the differentiation of preosteoblasts pre-treated with SWCNTs more remarkably than BMP-2. Therefore, combination of BMP-9 with SWCNTs seems to be a promising avenue for bone regeneration. [symboles non conformes]
|
2 |
Synthesis of chemically-modified single-walled carbon nanotubes by counter-current ammonia gas injection into the induction thermal plasma process / SynThèse de nanotubes de carbone mono-parois modifiés chimiquement par l'injection d'ammoniac gazeux à contre-courant dans un procédé à plasma thermique inductifShahverdi, Ali January 2013 (has links)
Résumé : Les nanotubes de carbone mono-parois (SWCNTs) sont très peu dispersibles dans les solvants et ils ont besoin d'être chimiquement modifiés avant leur utilisation dans beaucoup d'applications. Ce travail se concentre sur la synthèse du matériau des SWCNTs chimiquement modifié par une approche in situ. Les objectifs principaux de cette recherche sont : I) explorer le procédé chimique in situ pendant la synthèse des SWCNTs et 2) examiner de manière approfondie l'effet de l'environnement réactif sur les SWCNTs. Les effets du type de catalyseur et son contenu sur le produit fini des SWCNTs, synthétisé par plasma thermique inductif (PTI), ont été étudiés pour remplacer le cobalt (Co) toxique dans la matière première. À cet égard, trois mélanges de catalyseurs différents (c.-à-d. Ni-Y203, Ni-Co-Y203, et Ni-Mo-Y203) ont été utilisés. Les résultats expérimentaux ont montré que le type de catalyseur affecte la qualité des SWCNTs. Une qualité similaire peut être produite lorsque la même quantité de Co est remplacée par le Ni. En outre, des résultats observés dans les travaux expérimentaux ont été explicités par les résultats des calculs thermodynamiques. La therrnogravimétrie (TG) a été utilisée tout au long du travail pour caractériser les échantillons de SWCNTs. La TG a tout d'abord été normalisée par l'étude des effets des trois principaux paramètres instrumentaux (rampe de température, RT, la masse initiale de l'échantillon, MI, et le débit de gaz, D) sur le T, et largeur à mi-hauteur (LMH) obtenu à partir de graphiques TG et TG dérivés de noir de carbone, respectivement. Par conséquent, un plan factoriel à deux niveaux a été prévu. L'analyse statistique a montré que l'effet de RT, MI, et à un degré moindre D est significatif sur la LMH et négligeable sur Tonss. Une méthodologie a ensuite été développée sur la base de la synthèse des SWCNT en utilisant le système PTI, à travers une approche chimique in situ. L'ammoniac (NH3) a été choisi et injecté à contre-courant dans le réacteur PTI à trois débits différents et en utilisant quatre types de buses différentes. La simulation numérique a indiqué un meilleur mélange du NH3 dans le réacteur PTI lorsqu'une buse particulière a été utilisée. Les résultats expérimentaux montrent l'augmentation d'intensité de D-bande dans les spectres Raman d'échantillons SWCNTs lors de l'injection du NH3. Le NH3 pourrait augmenter la teneur en azote du produit fini de SWCNTs jusqu'à 10 fois. L'échantillon des SWCNTs traitée avec 15% vol de NH3 a montré une dispersion accrue dans le diméthylformamide et l'isopropanol. Les nanostructures de carbone en forme d'oignon et plane, ont aussi été observées. Une caractérisation complémentaire sur l'échantillon des SWCNTs traités par NH3 à 15% vol., a indiqué une modification de la surface des nanotubes, où des tubes métalliques ont montré une plus grande réactivité avec NH3 que les semi-conducteurs. Le modèle, y compris le champ d'écoulement thermique du réacteur et la cinétique de décomposition thermique de NH3 a suggéré une modification de surface des SWCNTs en deux étapes dans laquelle les nanotubes réagissent premièrement avec les espèces intermédiaires de H et de NH2. Le NH3 s'adsorbe ensuite chimiquement sur les nanotubes. Le modèle a également suggéré que les espèces intermédiaires comme le NNH et le N2H2 jouent un rôle principalement en conduisant la décomposition du NH3 plutôt que la modification chimique des SWCNTs. // Abstract : Pristine single-walled carbon nanotubes (SWCNTs) are poorly dispersible and insoluble in many solvents and need to be chemically modified prior to their use in many applications. This work is focused on the investigation of the synthesis of chemically modified SWCNTs material through an in situ approach. The main objectives of the presented research are: I) to explore the in situ chemical process during the synthesis of SWCNT and 2) to closely examine the effect of a reactive environment on SWCNTs. Effects of the catalyst type and content on the SWCNTs final product, synthesized by induction thermal plasma (1TP), were studied to replace toxic cobalt (Co) in the feedstock. In this regard, three different catalyst mixtures (i.e. Ni-Y203, Ni-Co-Y203, and Ni-Mo-Y203) were used. Experimental results showed that the catalyst type affects the quality of the SWCNT final product. Similar quality SWCNTs can be produced when the same amount of Co was replaced by Ni. Moreover, the results observed in this experimental work were further explained by thermodynamic calculation results. Thermogravimetry (TG) was used throughout the work to characterize the SWCNTs product. TG was firstly standardized by studying the effects of three main instrumental parameters (temperature ramp, TR, initial mass of the sample, 1M, and gas flow rate, FR) on the Lise, and full-width half maximum (FWHM) obtained from TG and derivative TG graphs of carbon black, respectively. Therefore, a two-level factorial statistical design was performed. The statistical analysis showed that the effect of TR, IM, and to a lower extent, FR, is significant on FWHM and insignificant on T01, 1. A methodology was then developed based upon the SWCNTs synthesis using the 1TP system, through an in situ chemistry approach. Ammonia (NH3) was selected and counter-currently injected into the ITP reactor at three different flow rates and by four different nozzle designs. Numerical simulation indicated a better mixing of NH3 in the ITP reactor when a certain nozzle was used. The experimental results showed the increase of D-band intensity in the Raman spectra of SWCNT samples upon the NH3 injection. NH3 could increase the nitrogen content of the SWCNTs final product up to 10 times. The SWCNTs sample treated with 15 vol% NH3 showed an enhanced dispersibility in Dimethylformamide and Isopropanol. Onion-like and planar carbon nanostructures were also observed. Complementary characterization on the SWCNT samples treated by 15 vol% NH3 indicated the surface modification of nanotubes. Metallic tubes showed a higher reactivity with NH3 than semiconducting ones. The model including the reactor thermo-flow field and NH3 thermal decomposition kinetics suggested a two-step SWCNT surface modification in which nanotubes firstly react with H and NH2 intermediates and later, NH3 chemisorbs on the nanotubes. The model also suggested that the intermediate species, like NNH and N2H2, play a rote primarily in driving the NH3 decomposition rather than the chemical modification of SWCNTs. [symboles non conformes]
|
Page generated in 0.0931 seconds