• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effects of Helium on Deuterium Retention in Tungsten Under Simultaneous Irradiation

Labelle, Andre Jean-Romeo Richard 25 August 2011 (has links)
The trapping behavior of deuterium and helium in polycrystalline tungsten (PCW) under D+-only, He+-only, sequential and simultaneous irradiation was studied as a function of incident ion fluences and irradiation temperature. Deuterium implanted at 300 and 500 K gets trapped at surface adsorption sites, vacancy-related traps, or extended defects. No deuterium was trapped for 700 K implantations. Results were affected by tungsten-carbide impurities in PCW specimens. It is suggested that He trapping occurs via the formation of He clusters, at impurity sites, or as part of He-vacancy complexes. For sequential implantations, D and He were found to de-trap each other, with He impeding the trapping of D when implanted first at 300 K. Under simultaneous irradiation a decrease in D inventories was observed for all cases, and a re-distribution of He to higher energy traps (associated with He-vacancy complex formation) was observed for higher fluences and temperatures.
2

The Effects of Helium on Deuterium Retention in Tungsten Under Simultaneous Irradiation

Labelle, Andre Jean-Romeo Richard 25 August 2011 (has links)
The trapping behavior of deuterium and helium in polycrystalline tungsten (PCW) under D+-only, He+-only, sequential and simultaneous irradiation was studied as a function of incident ion fluences and irradiation temperature. Deuterium implanted at 300 and 500 K gets trapped at surface adsorption sites, vacancy-related traps, or extended defects. No deuterium was trapped for 700 K implantations. Results were affected by tungsten-carbide impurities in PCW specimens. It is suggested that He trapping occurs via the formation of He clusters, at impurity sites, or as part of He-vacancy complexes. For sequential implantations, D and He were found to de-trap each other, with He impeding the trapping of D when implanted first at 300 K. Under simultaneous irradiation a decrease in D inventories was observed for all cases, and a re-distribution of He to higher energy traps (associated with He-vacancy complex formation) was observed for higher fluences and temperatures.
3

Etude des transferts d'énergie lors d'interactions plasma/surface / Study of the energy flux during plasma/surface interaction

Cormier, Pierre-Antoine 24 October 2012 (has links)
La connaissance de l’énergie transférée aux surfaces en contact avec un plasma basse pression est un paramètre clé pour le contrôle des procédés plasmas basse pression. Sa détermination permet une meilleure compréhension des mécanismes mis en jeu lors du dépôt ou la gravure de couches couches minces. Elle dépend des espèces du plasma (les ions, les électrons et les neutres) ainsi que de nombreux mécanismes physiques ou chimiques (réaction, condensation, émission radiative.). Elle peut être déterminée par la simulation du transport des particules dans le plasma, par des estimations de chaque contribution à partir des paramètres plasma ou tout simplement mesurée. Les études dédiées à sa mesure sont principalement basées sur l’utilisation d’une sonde calorimétrique, dont le principe sur l’interpolation du thermogramme mesuré. Ce type de méthode induit un long temps de mesure (2 min) et est source d’incertitudes. Un outil de diagnostic pour la mesure directe de l’énergie transférée a été développé au GREMI. Il est basé sur l’adaptation d’un capteur à thermopile initialement dédié à des mesures à pression atmosphérique. Cette thèse a donc été dédié à son développement et son utilisation pour l’étude de différents procédés plasmas basse pression : un propulseur spatial à effet Hall, un plasma poudreux, mais surtout de décharges magnétron. Des mesures ont été réalisées lors du dépôt de titane, d’aluminium, de TiO2 et de Al2O3. Les influences de la configuration magnétique de la cathode, du type de décharge, de l’échauffement des cibles, sur les conditions énergétiques à la surface du film en croissance ont été étudiées. / The knowledge of the energy flux during plasma/surface interactions is a key parameter for the control of low pressure plasmas, as sputter deposition or etching processes. The energy flux density at a surface depends on plasma species (ions, electrons, neutrals...) elementary processes (condensation, chemical reaction, radiative transfer). It can be obtained by carring out simulation of particule transport through the plasma, by the calculation of each energetic contribution from plasma parameters or by indirect or direct measurement. Most os works focused on the mesurement of the energy flux is based on the using of a calorimetric probe. This method is based on the calculation of the temporal temperature evolution. The main disadvantages are that this methods can cause error of about 10 % and the acquisition time of the thermogram which is about 2 min. A diagnostic tool which provide a direct measurement of the energy flux, with a good sensitivity and a good time resolution was designed in the GREMI.The aim of this PhD thesis was to developped this tool and use for the study of different plasma processes as capacitiv RF discharge, Hall effect plasma thruster and especially magnetron sputter deposition process. In this last process, the influence of the cathode magnetic configuration, the reactive gas, the dicharge type (HiPIMS, DCMS and pDCMS), the heating of the target was studied on the energy flux at the growing thin film duting the sputtering of a titanium and an aluminum target.
4

Study of negative ions surface production in cesium-free H2 and D2 plasmas / Etude de la production d'ions négatifs en surface dans un plasma H2 et D2 sans césium à basse pression

Moussaoui, Roba 19 October 2018 (has links)
Cette thèse porte sur l’étude de la production de surface des ions négatifs (IN) pour des applications dans la fusion thermonucléaire. Ce travail a été réalisé à l'aide d'une source plasma PHISIS. Les IN formés en surface de l'échantillon sont collectés et analysés avec un spectromètre de masse (SM). La fonction de la distribution en énergie des ions négatifs FDEIN est mesurée. Dans cette thèse, une technique de polarisation DC pulsée est introduite pour permettre l'étude de la production d'IN en surface sur des échantillons isolants comme le diamant. Un modèle qui calcule le taux de changement de la variation de la tension sur une surface isolante polarisée en mode pulsé est développé. De façon surprenante, la production d’IN en surface sur un diamant dopé au bore ou non dopé est beaucoup plus élevée en mode pulsé qu'en mode continu. Il est traité également la production d’IN en surface dans les conditions de faible tension de polarisation. Le meilleur rendement d’IN mesuré à faible polarisation est obtenu avec du diamant dopé au bore (BDD) et il est 2 fois plus élevé que celui mesuré sur HOPG (high oriented pyrolitic graphite). L'analyse de la production d’IN en surface à différents polarisations pour différents matériaux a été effectuée afin de corréler l'évolution du rendement d’IN aux changements d'état de surface. Une étude approfondie de la production en surface d'IN a été réalisée sur la surface de Nanoporous 12 CaO. 7Al2O3 electride surface. L'influence des conditions expérimentalles sur le rendement en IN a été étudiée. Dans cette contribution, nous montrons que ce matériau pourrait potentiellement être utilisé dans les sources d'ions négatifs sans césium / This thesis deals with negative ions (NI) surface production for applications in thermonuclear fusion. This work was conducted using a plasma source PHISIS. NI formed on a negatively biased sample surfaceare collected and analyzed with energy mass spectrometer (MS). Negative ion distribution function NIEDF is measured. A SIMION calculation was done to have a complete idea about MS transmission effect on the NIEDF. In the course of this thesis, a DC pulsed bias technique is introduced to enable the study of negative ion surface production on insulating samples as non-doped diamond layers. A model that calculate the rate of change of bias on insulator surface biased in pulsed mode is developed. Surprisingly, negative-ion surface production on boron-doped or non-doped diamond is much higher in pulsed mode than in continuous mode. This thesis deals also with negative ion surface production in low bias condition. The best NI yield measured at low bias is obtained with Boron doped diamond (BDD) ant it is 2 times higher than the one measured on HOPG (highly oriented pyrolytic graphite) surface. Analysis of NI surface production at different surface bias for different material were performed in order to correlate the NI yield evolution to the surface state changes.An extensive study of NI surface production was performed on Nanoporous 12CaO.7Al2O3 electride surface. The influence of surface temperature, bias and plasma exposure time on negative-ion yield was investigated. In this contribution, we show that the electride material has potentials to be used as a production surface in negative ion sources devoted to nuclear fusion application
5

Vers une gravure plasma de précision nanométrique : simulations de dynamique moléculaire en chimie Si-Cl / Towards a nanometric precision etching in reactive plasmas : molecular dynamics simulations of Si-Cl interactions

Brichon, Paulin 10 March 2015 (has links)
Ce travail de thèse aborde le problème de la gravure de matériaux ultraminces pour la réalisation de nouvelles générations de transistors (FDSOI, FinFET) dans les dispositifs nanoélectroniques avancés. Ces transistors doivent être gravés avec une précision nanométrique pour ne pas endommager les propriétés électroniques des couches actives. Afin d'atteindre une telle précision, les dommages surfaciques et l'épaisseur des couches réactives formées lors de l'exposition plasma doivent être maintenus en-deçà du nanomètre, véritable défi auquel les plasmas ICP continus ne sont plus à même de répondre. Pour assister le développement de nouveaux procédés de gravure, des simulations de dynamique moléculaire ont été développées afin étudier l'influence de nouvelles technologies plasma (plasmas pulsés, plasma basse Te, gaz pulsés) sur les interactions entre silicium et plasmas chlorés. Les simulations montrent que l'énergie ionique (Eion) est le paramètre numéro un pour contrôler la gravure de couches de Si ultraminces, une diminution de l'énergie réduisant à la fois l'épaisseur de couche endommagée SiClx et le taux de gravure. Le rapport du flux de neutres sur flux d'ions (Γ) est le 2nd paramètre clé : son augmentation entraîne une diminution sensible l'épaisseur de couche perturbée tout en augmentant le taux de gravure. Quantitativement, cette étude montre que des plasmas caractérisés par de faibles énergies ioniques (< 15 eV) ou des rapports Γ importants (⩾ 1000) permettre d'obtenir des couches réactives d'épaisseur sub-nanométrique (cf. plasmas basse Te ou synchronisés pulsés). En mode "bias pulsé", les simulations montrent que pour une valeur Vbias donnée, pulser le bias permet de diminuer à la fois l'épaisseur de couche réactive et le taux de gravure. Cet effet est d'autant plus marqué que le rapport de cycle DC est faible, ce qui élargit la fenêtre des paramètres opératoires. Pour contrôler la gravure, une autre solution pourrait consister à contrôler l'épaisseur des couches réactives de manière dynamique. Inspiré de l'ALE (Atomic Layer Etching), ce nouveau concept consiste à pulser rapidement et alternativement différents gaz pour décomposer le procédé de gravure en cycles répétitifs de deux étapes plasma distinctes. La 1ère étape vise à limiter la formation de la couche mixte à 1nm d'épaisseur dans un plasma réactif (Cl2) en optimisant le temps d'injection du gaz; la 2nde étape vise à graver la couche ainsi formée dans un plasma de gaz rare (Ar, Xe) sans endommager le matériau sous-jacent. Nos simulations confirment la faisabilité et la répétabilité d'un tel concept. / This thesis focuses on technological challenges associated with the etching of ultrathin materials used for new generations of transistors (FDSOI, FinFET) in advanced nanoelectronics devices. These transistors must be etched with a nanometric precision in order to preserve the electronic properties of active layers. To reach such a precision, plasma-induced damage and reactive layers thicknesses formed during the etch must remain below 1nm, a challenge which cannot be addressed by continuous-waves ICP plasmas. To assist the development of new etching processes, molecular dynamics simulations have been developed to study the influence of new plasma technologies (pulsed plasmas, low-Te plasmas, gaz pulsing) on interactions between silicon and chlorine plasmas. Simulations show that the key parameter to control the etching of ultrathin Si layers is the ion energy (Eion), which lowers both the SiClx damaged layer thickness and the etch rate when it is decreased. The neutral-to-ion flux ratio (Γ) is the second key parameter: its increase strongly reduces the reactive layer thickness while the etch rate grows. Quantitatively, this study shows that plasmas with low ion energies (< 15 eV) and high Γ ratios (⩾ 1000) allow to obtain sub-nanometer thick reactive layers (cf. low-Te or synchronized pulsed plasmas). In « pulsed bias » mode, simulations show that for a given Vbias value, pulsing the bias decreases both the reactive layer thickness and the etch rate. This effect is stronger at low duty cycle DC, which can improve the control of the etching process. To control the etching of ultrathin films, another solution may be to control dynamically the reactive layers formation. Inspired from ALE (Atomic Layer Etching) principle, this new concept consists in pulsing quickly and alternatively several gases to divide the etching process into repetitive cycles of two distinct plasma steps. The first step aims to limit the mixed layer formation at 1nm in a reactive (Cl2) plasma by optimizing the gas injection time; the 2nd step aims to remove the so-formed layer in a noble gas plasma (Ar, Xe) without damaging the material below. Our simulations confirm the feasibility and the repeatability of such a concept.
6

Vers une gravure plasma de précision nanométrique : simulations de dynamique moléculaire en chimie Si-Cl / Towards a nanometric precision etching in reactive plasmas : molecular dynamics simulations of Si-Cl interactions

Brichon, Paulin 10 March 2015 (has links)
Ce travail de thèse aborde le problème de la gravure de matériaux ultraminces pour la réalisation de nouvelles générations de transistors (FDSOI, FinFET) dans les dispositifs nanoélectroniques avancés. Ces transistors doivent être gravés avec une précision nanométrique pour ne pas endommager les propriétés électroniques des couches actives. Afin d'atteindre une telle précision, les dommages surfaciques et l'épaisseur des couches réactives formées lors de l'exposition plasma doivent être maintenus en-deçà du nanomètre, véritable défi auquel les plasmas ICP continus ne sont plus à même de répondre. Pour assister le développement de nouveaux procédés de gravure, des simulations de dynamique moléculaire ont été développées afin étudier l'influence de nouvelles technologies plasma (plasmas pulsés, plasma basse Te, gaz pulsés) sur les interactions entre silicium et plasmas chlorés. Les simulations montrent que l'énergie ionique (Eion) est le paramètre numéro un pour contrôler la gravure de couches de Si ultraminces, une diminution de l'énergie réduisant à la fois l'épaisseur de couche endommagée SiClx et le taux de gravure. Le rapport du flux de neutres sur flux d'ions (Γ) est le 2nd paramètre clé : son augmentation entraîne une diminution sensible l'épaisseur de couche perturbée tout en augmentant le taux de gravure. Quantitativement, cette étude montre que des plasmas caractérisés par de faibles énergies ioniques (< 15 eV) ou des rapports Γ importants (⩾ 1000) permettre d'obtenir des couches réactives d'épaisseur sub-nanométrique (cf. plasmas basse Te ou synchronisés pulsés). En mode "bias pulsé", les simulations montrent que pour une valeur Vbias donnée, pulser le bias permet de diminuer à la fois l'épaisseur de couche réactive et le taux de gravure. Cet effet est d'autant plus marqué que le rapport de cycle DC est faible, ce qui élargit la fenêtre des paramètres opératoires. Pour contrôler la gravure, une autre solution pourrait consister à contrôler l'épaisseur des couches réactives de manière dynamique. Inspiré de l'ALE (Atomic Layer Etching), ce nouveau concept consiste à pulser rapidement et alternativement différents gaz pour décomposer le procédé de gravure en cycles répétitifs de deux étapes plasma distinctes. La 1ère étape vise à limiter la formation de la couche mixte à 1nm d'épaisseur dans un plasma réactif (Cl2) en optimisant le temps d'injection du gaz; la 2nde étape vise à graver la couche ainsi formée dans un plasma de gaz rare (Ar, Xe) sans endommager le matériau sous-jacent. Nos simulations confirment la faisabilité et la répétabilité d'un tel concept. / This thesis focuses on technological challenges associated with the etching of ultrathin materials used for new generations of transistors (FDSOI, FinFET) in advanced nanoelectronics devices. These transistors must be etched with a nanometric precision in order to preserve the electronic properties of active layers. To reach such a precision, plasma-induced damage and reactive layers thicknesses formed during the etch must remain below 1nm, a challenge which cannot be addressed by continuous-waves ICP plasmas. To assist the development of new etching processes, molecular dynamics simulations have been developed to study the influence of new plasma technologies (pulsed plasmas, low-Te plasmas, gaz pulsing) on interactions between silicon and chlorine plasmas. Simulations show that the key parameter to control the etching of ultrathin Si layers is the ion energy (Eion), which lowers both the SiClx damaged layer thickness and the etch rate when it is decreased. The neutral-to-ion flux ratio (Γ) is the second key parameter: its increase strongly reduces the reactive layer thickness while the etch rate grows. Quantitatively, this study shows that plasmas with low ion energies (< 15 eV) and high Γ ratios (⩾ 1000) allow to obtain sub-nanometer thick reactive layers (cf. low-Te or synchronized pulsed plasmas). In « pulsed bias » mode, simulations show that for a given Vbias value, pulsing the bias decreases both the reactive layer thickness and the etch rate. This effect is stronger at low duty cycle DC, which can improve the control of the etching process. To control the etching of ultrathin films, another solution may be to control dynamically the reactive layers formation. Inspired from ALE (Atomic Layer Etching) principle, this new concept consists in pulsing quickly and alternatively several gases to divide the etching process into repetitive cycles of two distinct plasma steps. The first step aims to limit the mixed layer formation at 1nm in a reactive (Cl2) plasma by optimizing the gas injection time; the 2nd step aims to remove the so-formed layer in a noble gas plasma (Ar, Xe) without damaging the material below. Our simulations confirm the feasibility and the repeatability of such a concept.
7

Investigation of Plasma Surface Interactions using Mueller Polarimetry / L'Étude des Interactions Plasma-Surface en utilisant la Polarimètrie de Mueller / Onderzoek naar Plasma-Oppervlakte Interacties met behulp van Mueller Polarimetrie

Slikboer, Elmar 26 November 2018 (has links)
Cette thèse examine une nouvelle méthode de diagnostic, appelée Polarimètrie de Mueller, pour l’étude des interactions plasma-surface. Cette technique d’imagerie permet la caractérisation optique résolue en temps des cibles exposées au plasma. Les matrices de Mueller mesurées sont analysées en utilisant la décomposition logarithmique donnant des informations polarimétriques sur la diattenuation, la dépolarisation et la biréfringence. Cette dernière est exploitée en examinant des matériaux optiquement actifs afin d’identifier des aspects spécifiques de l’interaction avec le plasma, tels que les champs électriques ou la température de surface.Ce travail se concentre sur les cibles électro-optiques, qui permettent principalement la détection de champs électriques induits par la charge de surface déposée lors de l’interaction. La biréfringence est couplée analytiquement au champ électrique, en rapportant le retard de phase du faisceau sonde de lumière polarisée, à l’ellipsoïde d’index perturbé suivant l’effet Pockels. Grâce à cette approche analytique, les matériaux ayant des propriétés électrooptiques spécifiques peuvent être choisis de telle manière que toutes les composantes individuelles de champ électrique (axiales et radiales) induites à l’intérieur de l’échantillon soient imagées séparément. Pour la première fois les composantes du champ électriques peuvent être découplées permettant de mieux comprendre la dynamique du plasma proche d’une surface diélectrique.Cette technique est utilisée pour étudier l’impact d’ondes d’ionisation sur des surfaces. Ces décharges, générées par un jet de plasma à pression atmosphérique dans la gamme kHz, sont des plasmas froids filamentaires généralement utilisés pour des applications diverses telles que la fonctionnalisation de surface de polymères ou des traitements biomédicaux, mais les méthodes de diagnostic disponibles pour étudier les effets induits sur les surfaces sont limités. L’imagerie de polarimètrie Mueller appliquée aux cibles électro-optiques permet d’examiner les champs axiaux et radiaux en termes d’amplitude (3-6 kV/cm), d’échelles spatiales (<1mm axiales and <1cm radiales) et d’échelles temporelles (< 1μs pulsée and < 10μs CA) pour divers paramètres de fonctionnement du jet, e.g. amplitude de tension et gaz environnant.Simultanément à la biréfringence transitoire induite par le champ électrique, un signal de fond constant est également observé. Il est induit par la contrainte résultante du gradient de température induit à l’intérieur du matériau ciblé. Une relation analytique est obtenue en utilisant l’effet photo-élastique, permettant de développer une procédure de fitting pour retrouver la distribution de température. Cette procédure est utilisée, après calibration, pour montrer que la température de l’échantillon peut varier jusqu’`a 25 degrés par rapport aux conditions ambiantes – tandis que les changements dans le champ électrique sont également mesurés – et dépend de la fréquence de la tension d’alimentation AC du jet de plasma. La détermination précise de la température induite dans les cibles est importante car la plupart des applications visent des échantillons thermosensibles.Enfin, ce travail montre comment des échantillons complexes (aussi bien en terme d’état de surface que de composition chimique) peuvent être examinés lors d’une interaction plasma-surface, en les combinant avec une cible électrooptique. En raison de l’ajout d’un échantillon complexe, une composante de dépolarisation est ajoutée due à la diffusion du faisceau lumineux polarisé. Les changements de dépolarisation sont liés à l’évolution de l’échantillon complexe au cours du traitement par plasma. Ceux-ci, couplés aux champs électriques mesurés simultanément, fournissent un outil de diagnostic unique pour examiner les interactions plasma-surface. Cela a été appliqué à un cas test où une seule couche de cellules d’oignon est exposée aux ondes d’ionisation générées par le jet de plasma froid. / In this thesis, a new diagnostic method called Mueller Polarimetry is examined for the investigation of plasma-surface interactions. This imaging technique allows the time-resolved optical characterization of targets under plasma exposure. The measured Mueller matrices are analyzed by using the logarithmic decomposition providing polarimetric data on diattenuation, depolarization, and birefringence. The latter is used by examining materials that possess optically active behavior to identify specific aspects of the plasma interaction, e.g. electric fields or temperature.This work focusses on electro-optic targets, which primarily enables the detection of electric fields induced by surface charge deposited during the interaction. The birefringence is coupled to the externally induced electric field by analytically relating the phase retardance for the probing polarized light beam to the perturbed index ellipsoid, according to the Pockels effect. Through this analytical approach, materials with specific electro-optic properties can be chosen in such a way – together with the orientation of the Mueller polarimeter itself – that all the individual electric field components (axial and radial) induced inside the sample are imaged separately. This has never been done before and allows to better understand the plasma dynamics in the vicinity of a dielectric surface.It is used to investigate the surface impact by guided ionization waves generated by a kHz-driven atmospheric pressure plasma jet. These non-thermal filamentary discharges are generally applied to various samples for e.g. surface functionalization of polymers or biomedical treatment of organic tissues. However, available diagnostic tools are limited to study these interactions. Imaging Mueller polarimetry applied to electro-optic targets examines the axial and radial field patterns in terms of amplitude (3-6 kV/cm), spatial scales (< 1mm axial and <1cm radial), and timescales (<1μs pulsed and <10μs AC) for various operating parameters of the jet, for example voltage amplitude and surrounding gas.Simultaneous with the transient birefringence induced by the electric field, a constant background pattern is also observed. This results from strain induced by temperature gradients inside the targeted material. An analytical relation is obtained following the photo-elastic effect, which allowed a fitting procedure to be designed to retrieve the temperature pattern. This procedure is used after calibration to show that the temperature of the sample can vary up to 25 degrees relative to room conditions – while changes in the electric field are seen as well – depending on the operating frequency of the AC driven plasma jet. The accurate determination of the temperature is important since most applications involve temperature sensitive samples.Lastly, this work shows how complex samples (in terms of surface geometry and/or chemical composition) can be examined during a plasma-surface interaction. This is done by combining them with the electro-optic targets. Due to the addition of a (thin) complex sample, depolarization is added to the system through scattering of the polarized light beam. In-situ observed changes of depolarization relate to the evolution of the complex sample during the plasma treatment. This, coupled with the simultaneously monitored electric field patterns, provides a unique diagnostic tool to examine the plasma-surface interactions. This has been applied for a test case where a single layer of onion cells is exposed to the ionization waves generated by the non-thermal plasma jet.
8

Développement et caractérisation de sources de neutres réactifs pour l’étude des interactions plasmas-surfaces

Boudreault, Olivier 08 1900 (has links)
L’objectif de ce mémoire de maîtrise est de développer et de caractériser diverses sources de neutres réactifs destinées à des études fondamentales des interactions plasmas-surfaces. Ce projet s’inscrit dans le cadre d’une vaste étude de la physique des interactions plasmas-parois mises en jeu dans les procédés de gravure par plasma des matériaux de pointe. Une revue de la littérature scientifique sur les diverses méthodes permettant de générer des faisceaux de neutres réactifs nous a permis de sélectionner deux types de sources. La première, une source pyrolitique, a été caractérisée par spectrométrie de masse en utilisant le C2F6 comme molécule mère. Nous avons montré que le C2F6 était dissocié à plus de 90% à 1000ºC et qu’il formait du CF4, lui-même dissocié en CF2 vers 900ºC. Ces résultats ont été validés à l’aide d’un modèle basé sur des calculs d’équilibres chimiques, qui a aussi prédit la formation de F à 1500ºC. La seconde source, un plasma entretenu par une onde électromagnétique de surfaces, a été caractérisée par spectroscopie optique d’émission et par interférométrie haute fréquence. Dans le cas du plasma d’argon créé par un champ électromagnétique (>GHz), nos travaux ont révélé une distribution en énergie des électrons à trois températures avec Te-low>Te-high<Te-tail. Nous avons conclu que la formation d’électrons suprathermiques était liée à la génération d’instabilités de plasma au point de résonance au voisinage des parois du réacteur et à des mécanismes d’amortissement de ces instabilités de type Landau. Le même phénomène a été observé dans le plasma de Cl2, mais cet effet disparaissait pour des pressions élevées du au fait de l’amortissement collisionnel. Nous avons aussi montré que ces sources pouvaient conduire à des degrés de dissociation du Cl2 près de 100%. / The goal of this Master thesis goal is to develop and characterize different sources of reactive neutrals aimed at fundamental studies of plasma-surface interactions. This project is part of a broader study on the physics driving plasma-wall interactions during plasma etching of advanced materials. Following our literature review of the various approaches used to generate radical beams, we have selected two types of sources. The first one, a thermal cracker, was characterized by line-of-sight mass spectrometry using C2F6 as the mother. We have shown that more than 90% of the C2F6 was dissociated at 1000ºC, producing CF4 that dissociates into CF2 at temperatures close to 900ºC. These results were in good agreement with the predictions of a model based on chemical equilibrium calculations, which also predicted the formation of F radicals at 1500 ºC. The second source, a surface-wave plasma, was characterised by optical emission spectroscopy and microwave interferometry. For a high-frequency (>1GHz) argon plasmas, we have shown a three temperature electron energy distribution function with Te-low>Te-high<Te-tail. We have concluded that the formation of suprathermal electrons was linked to the generation of plasma instabilities at the resonance point near the chamber walls, and to Landau damping of these instabilities. The same phenomenon was observed in Cl2 plasma, but this effect vanished at high pressures because of collisional damping. We have shown that this type of source could produce near 100% dissociation of Cl2, depending on operating conditions.
9

Développement et caractérisation de sources de neutres réactifs pour l’étude des interactions plasmas-surfaces

Boudreault, Olivier 08 1900 (has links)
L’objectif de ce mémoire de maîtrise est de développer et de caractériser diverses sources de neutres réactifs destinées à des études fondamentales des interactions plasmas-surfaces. Ce projet s’inscrit dans le cadre d’une vaste étude de la physique des interactions plasmas-parois mises en jeu dans les procédés de gravure par plasma des matériaux de pointe. Une revue de la littérature scientifique sur les diverses méthodes permettant de générer des faisceaux de neutres réactifs nous a permis de sélectionner deux types de sources. La première, une source pyrolitique, a été caractérisée par spectrométrie de masse en utilisant le C2F6 comme molécule mère. Nous avons montré que le C2F6 était dissocié à plus de 90% à 1000ºC et qu’il formait du CF4, lui-même dissocié en CF2 vers 900ºC. Ces résultats ont été validés à l’aide d’un modèle basé sur des calculs d’équilibres chimiques, qui a aussi prédit la formation de F à 1500ºC. La seconde source, un plasma entretenu par une onde électromagnétique de surfaces, a été caractérisée par spectroscopie optique d’émission et par interférométrie haute fréquence. Dans le cas du plasma d’argon créé par un champ électromagnétique (>GHz), nos travaux ont révélé une distribution en énergie des électrons à trois températures avec Te-low>Te-high<Te-tail. Nous avons conclu que la formation d’électrons suprathermiques était liée à la génération d’instabilités de plasma au point de résonance au voisinage des parois du réacteur et à des mécanismes d’amortissement de ces instabilités de type Landau. Le même phénomène a été observé dans le plasma de Cl2, mais cet effet disparaissait pour des pressions élevées du au fait de l’amortissement collisionnel. Nous avons aussi montré que ces sources pouvaient conduire à des degrés de dissociation du Cl2 près de 100%. / The goal of this Master thesis goal is to develop and characterize different sources of reactive neutrals aimed at fundamental studies of plasma-surface interactions. This project is part of a broader study on the physics driving plasma-wall interactions during plasma etching of advanced materials. Following our literature review of the various approaches used to generate radical beams, we have selected two types of sources. The first one, a thermal cracker, was characterized by line-of-sight mass spectrometry using C2F6 as the mother. We have shown that more than 90% of the C2F6 was dissociated at 1000ºC, producing CF4 that dissociates into CF2 at temperatures close to 900ºC. These results were in good agreement with the predictions of a model based on chemical equilibrium calculations, which also predicted the formation of F radicals at 1500 ºC. The second source, a surface-wave plasma, was characterised by optical emission spectroscopy and microwave interferometry. For a high-frequency (>1GHz) argon plasmas, we have shown a three temperature electron energy distribution function with Te-low>Te-high<Te-tail. We have concluded that the formation of suprathermal electrons was linked to the generation of plasma instabilities at the resonance point near the chamber walls, and to Landau damping of these instabilities. The same phenomenon was observed in Cl2 plasma, but this effect vanished at high pressures because of collisional damping. We have shown that this type of source could produce near 100% dissociation of Cl2, depending on operating conditions.
10

Study of negative ion surface production in cesium-free H2 and D2 plasmas : application to neutral beam injectors for ITER and DEMO / Etude de la production en surface d'ions négatifs en plasma d'hydrogène et de deutérium : applications à la nouvelle génération d'injecteurs d'ITER et DEMO

Achkasov, Kostiantyn 09 December 2015 (has links)
L'objectif de cette thèse était trouver des solutions pour produire de hauts rendements d’ions négatifs (IN) H–/D– sur des surfaces dans des plasmas de H2/D2 sans Cs pour des applications en fusion thermonucléaire. La modélisation des fonctions de distribution en énergie des ions négatifs (FDEIN) a montré un accord remarquable avec l'expérience pour les matériaux carbonés. Une méthode de reconstruction mis au point dans le cadre de cette thèse a permis de déterminer les distributions en énergie et en angle des IN émis de la surface. La méthode de reconstruction peut être appliquée à tout type de surface et/ou d’IN. Une étude de la production des IN en surface a été réalisée sur une grande variété de matériaux (des différents types de graphite, couches de diamant et métaux). L'influence sur le rendement des IN de la température de surface, de la tension de polarisation et du temps d'exposition au plasma a été étudiée. Une méthode de polarisation pulsée a été développée pour permettre l'étude de production des IN sur les surfaces de matériaux isolants tels que le diamant microcristallin non dopé. L'utilisation de diagnostics de surface ex situ tels que la désorption programmée en température (DPT) et la spectroscopie Raman ont permis de caractériser l'état de surface des matériaux carbonés. L’ensemble des études a permis de montrer que pour optimiser le rendement des IN sur le diamant, il faut travailler avec une surface moins dégradée. Celle ci peut être obtenu en augmentant la température de surface jusqu’à 400°C – 500°C ce qui permet de restaurer les propriétés intrinsèques des diamants ou en appliquant une polarisation pulsée. / The objective of this thesis was to find solutions to produce high yields of H–/D– negative ions (NI) on surfaces in Cs-free H2/D2 plasmas for thermonuclear fusion applications. Modeling of the negative-ion energy distribution functions (NIEDF) has shown remarkable agreement with experiment for carbon materials. The reconstruction method developed in the course of this thesis has allowed to determine the distribution in energy and angle of NI emitted from the surface. The reconstruction method can be applied to any type of surface and/or NI. A study was performed on a large variety of materials: different types of graphite, diamond films and metals. The influence of surface temperature, bias and plasma exposure time on NI yield was investigated. The method of pulsed bias was developed to enable the study of NI production on surfaces of insulating materials such as microcrystalline non-doped diamond (MCD). The use of ex situ surface diagnostics such as temperature programmed desorption (TPD) and Raman spectroscopy has allowed to characterize the surface state of carbon materials. Basing on the performed studies, we demonstrated that to optimize the NI yield on diamond one has to work with a less degraded surface. This can be obtained rising the surface temperature to 400°C–500°C which allows restoring intrinsic properties of diamond. The less degraded surface state can also be obtained by applying the pulsed bias which gives the possibility to increase the H2/D2 surface coverage and diminish the defects induced by plasma exposure.

Page generated in 0.1219 seconds