• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dinâmica não linear de pulsos eletromagnéticos em um plasma relativístico frio

Bonatto, Alexandre January 2008 (has links)
Neste trabalho investigamos a propagação auto-consistente de pulsos eletromagnéticos em um plasma relativístico frio de dois fluidos (iônico-eletrônico). A aplicação do formalismo Hamiltoniano em um modelo cujas soluções foram previamente estudadas na literatura de forma numérica e analítica nos permite interpretar o problema sob a perspectiva da dinâmica não linear de uma quase-partícula em um potencial efetivo, fornecendo informações relevantes sobre questões de interesse. São analisadas a existência e a estabilidade de soluções com pequenas amplitudes propagando-se em alta e em baixa velocidade, com ênfase no mecanismo de destruição dessas soluções que resulta na perda do movimento adiabático. Pulsos com grandes amplitudes propagando-se em baixa velocidade também são estudados com a finalidade de se conhecer mais detalhes sobre o espectro dessas soluções. As simulações mostram que esses pulsos não são soluções isoladas como descrito na literatura, e sim periódicas. / In this work we investigate the self-consistent propagation of nonlinear electromagnetic pulses in a cold relativistic two-fluids plasma model. Application of Hamiltonian formalism in a model whose solutions had been studied in the literature both numerically and analytically allows us to interpret the system from the perspective of nonlinear dynamics as a quasi-particle in an effective potential, addressing issues of current interest. Existence and stability of small amplitude solutions propagating at both high and low speeds are analyzed focusing on how these solutions are destroyed and adiabatic motion is broken. Larger amplitude pulses propagating at low speeds are also investigated in order to have a better understanding of these solutions spectra. Simulations show that pulses with larger amplitudes are not isolated as described in the literature, but rather periodic solutions.
2

Dinâmica não linear de pulsos eletromagnéticos em um plasma relativístico frio

Bonatto, Alexandre January 2008 (has links)
Neste trabalho investigamos a propagação auto-consistente de pulsos eletromagnéticos em um plasma relativístico frio de dois fluidos (iônico-eletrônico). A aplicação do formalismo Hamiltoniano em um modelo cujas soluções foram previamente estudadas na literatura de forma numérica e analítica nos permite interpretar o problema sob a perspectiva da dinâmica não linear de uma quase-partícula em um potencial efetivo, fornecendo informações relevantes sobre questões de interesse. São analisadas a existência e a estabilidade de soluções com pequenas amplitudes propagando-se em alta e em baixa velocidade, com ênfase no mecanismo de destruição dessas soluções que resulta na perda do movimento adiabático. Pulsos com grandes amplitudes propagando-se em baixa velocidade também são estudados com a finalidade de se conhecer mais detalhes sobre o espectro dessas soluções. As simulações mostram que esses pulsos não são soluções isoladas como descrito na literatura, e sim periódicas. / In this work we investigate the self-consistent propagation of nonlinear electromagnetic pulses in a cold relativistic two-fluids plasma model. Application of Hamiltonian formalism in a model whose solutions had been studied in the literature both numerically and analytically allows us to interpret the system from the perspective of nonlinear dynamics as a quasi-particle in an effective potential, addressing issues of current interest. Existence and stability of small amplitude solutions propagating at both high and low speeds are analyzed focusing on how these solutions are destroyed and adiabatic motion is broken. Larger amplitude pulses propagating at low speeds are also investigated in order to have a better understanding of these solutions spectra. Simulations show that pulses with larger amplitudes are not isolated as described in the literature, but rather periodic solutions.
3

Dinâmica não linear de pulsos eletromagnéticos em um plasma relativístico frio

Bonatto, Alexandre January 2008 (has links)
Neste trabalho investigamos a propagação auto-consistente de pulsos eletromagnéticos em um plasma relativístico frio de dois fluidos (iônico-eletrônico). A aplicação do formalismo Hamiltoniano em um modelo cujas soluções foram previamente estudadas na literatura de forma numérica e analítica nos permite interpretar o problema sob a perspectiva da dinâmica não linear de uma quase-partícula em um potencial efetivo, fornecendo informações relevantes sobre questões de interesse. São analisadas a existência e a estabilidade de soluções com pequenas amplitudes propagando-se em alta e em baixa velocidade, com ênfase no mecanismo de destruição dessas soluções que resulta na perda do movimento adiabático. Pulsos com grandes amplitudes propagando-se em baixa velocidade também são estudados com a finalidade de se conhecer mais detalhes sobre o espectro dessas soluções. As simulações mostram que esses pulsos não são soluções isoladas como descrito na literatura, e sim periódicas. / In this work we investigate the self-consistent propagation of nonlinear electromagnetic pulses in a cold relativistic two-fluids plasma model. Application of Hamiltonian formalism in a model whose solutions had been studied in the literature both numerically and analytically allows us to interpret the system from the perspective of nonlinear dynamics as a quasi-particle in an effective potential, addressing issues of current interest. Existence and stability of small amplitude solutions propagating at both high and low speeds are analyzed focusing on how these solutions are destroyed and adiabatic motion is broken. Larger amplitude pulses propagating at low speeds are also investigated in order to have a better understanding of these solutions spectra. Simulations show that pulses with larger amplitudes are not isolated as described in the literature, but rather periodic solutions.
4

Dinâmica não linear de ondas eletromagnéticas localizadas em interações laser-plasma

Bonatto, Alexandre January 2012 (has links)
Neste trabalho estudamos a dinâmica fracamente não linear de ondas eletromagnéti- cas localizadas em interações laser-plasma. Ao se propagarem, estas ondas perturbam a densidade de elétrons do plasma e eventualmente originam campos elétricos por efeitos de space-charge. Estes campos por sua vez afetam a dinâmica das ondas, ou seja, a dinâmica de ambos é acoplada. Modelamos a onda localizada através de uma equação para seu envelope e tratamos o plasma como um fluído eletrônico frio, com alta mobilidade, e um fundo iônico fixo neutralizador . Inicialmente investigamos a dinâmica longitudinal da propagação autoconsistente de pulsos laser em plasmas. Nesta configuração, os campos elétricos no plasma são exci- tados no rastro dos pulsos, sendo por isto denominados wakefields. Desenvolvemos um modelo composto por duas equações, uma para o envelope do pulso laser e outra para o wakefield, no qual as interações entre ambos são plenamente consideradas na análise da evolução temporal e da estabilidade do pulso. Aplicando técnicas de lagrangeano efetivo e o método variacional obtemos uma equação para a dinâmica aproximada da largura dos pulsos, utilizada para fazer estimativas analíticas sobre dois casos-limite: pulsos largos e pulsos estreitos. Enquanto pulsos largos podem ou não manter a sua forma localizada de- pendendo da sua potência, pulsos muito estreitos sempre tendem a se dispersar à medida que o tempo avança. Em seguida estudamos a propagação de feixes laser focalizados, incluindo a dinâmica transversal em um modelo desenvolvido sem o uso da aproximação paraxial. Este mo- delo, direcionado à análise de regimes estacionários quando observados no referencial do feixe, nos permite obter uma condição de equilíbrio para os perfis transversais do mesmo. Examinamos a dependência de tais perfis nos parâmetros de controle e a estabilidade de feixes levemente descasados dos perfis de equilíbrio. Embora os detalhes da dinâmica dos feixes dependam das condições iniciais, feixes descasados sempre evoluem para padrões espaço-temporais incoerentes, independente da precisão adotada em tais condições. Em ambos os sistemas abordados, os modelos podem ser aplicados para estudar pro- pagação de ondas em plasmas com densidades arbitrárias, uma vez que foram construídos sem aproximar a velocidade de propagação da onda eletromagnética pela velocidade da luz no vácuo (algo usual no estudo de plasmas com baixa densidade, do tipo underdense). / In the present analysis we study the weakly nonlinear dynamics of localized electro- magnetic waves in laser-plasma interactions. As these waves are injected into plasmas, they disturb its electronic density and eventually give rise to space-charge fields, which in turn affect back the waves. In other words, their dynamics is coupled. We model the localized wave using an equation for its envelope and we treat the plasma as consisting of a mobile cold electronic fluid and a neutralizing fixed ionic background. We first investigate the longitudinal self-consistent dynamics propagation of laser pul- ses in plasmas. Here the space-charge fields in the plasma are excited in the wake of the pulses, thus being called wakefields. We develop a model consisting of two equations, one for the pulse envelope, another for the wakefield, and the interactions between both are fully taken to account to analyze the pulse time dependent dynamics and stability. Ap- plying effective Lagrangian techniques and the variational approach we derive an equation for the approximated dynamics of a pulse width, which is used in order to obtain some analytical estimates about two limit-cases: wide and narrow pulses. While wide pulses may or may not retain the localized shape depending on their power, narrower pulses always tend to delocalize as time evolves. Next we study the propagation of focused laser beams, taking to account the trans- verse dynamics in a model derived avoiding any assumption on paraxial conditions. This model, directed to the analysis of stationary regimes when observed in the co-moving coordinate of the beam frame, allows us to obtain an equilibrium condition for the beam transverse profiles. We examine the dependence of equilibrium profiles on control para- meters and the stability of beams as one adds small mismatches to the ideally matched equilibrium. Details of beam evolution depend on initial conditions. However, indepen- dently of the precise form of initial conditions, mismatched beams evolve to incoherent space-time patterns. In both systems discussed, the models can be applied to study the wave propagation in plasmas with arbitrary densities, since they were constructed without approximating the group velocity of the wave by the speed of light in vacuum (something usual when studying underdense plasmas).
5

Dinâmica não linear de ondas eletromagnéticas localizadas em interações laser-plasma

Bonatto, Alexandre January 2012 (has links)
Neste trabalho estudamos a dinâmica fracamente não linear de ondas eletromagnéti- cas localizadas em interações laser-plasma. Ao se propagarem, estas ondas perturbam a densidade de elétrons do plasma e eventualmente originam campos elétricos por efeitos de space-charge. Estes campos por sua vez afetam a dinâmica das ondas, ou seja, a dinâmica de ambos é acoplada. Modelamos a onda localizada através de uma equação para seu envelope e tratamos o plasma como um fluído eletrônico frio, com alta mobilidade, e um fundo iônico fixo neutralizador . Inicialmente investigamos a dinâmica longitudinal da propagação autoconsistente de pulsos laser em plasmas. Nesta configuração, os campos elétricos no plasma são exci- tados no rastro dos pulsos, sendo por isto denominados wakefields. Desenvolvemos um modelo composto por duas equações, uma para o envelope do pulso laser e outra para o wakefield, no qual as interações entre ambos são plenamente consideradas na análise da evolução temporal e da estabilidade do pulso. Aplicando técnicas de lagrangeano efetivo e o método variacional obtemos uma equação para a dinâmica aproximada da largura dos pulsos, utilizada para fazer estimativas analíticas sobre dois casos-limite: pulsos largos e pulsos estreitos. Enquanto pulsos largos podem ou não manter a sua forma localizada de- pendendo da sua potência, pulsos muito estreitos sempre tendem a se dispersar à medida que o tempo avança. Em seguida estudamos a propagação de feixes laser focalizados, incluindo a dinâmica transversal em um modelo desenvolvido sem o uso da aproximação paraxial. Este mo- delo, direcionado à análise de regimes estacionários quando observados no referencial do feixe, nos permite obter uma condição de equilíbrio para os perfis transversais do mesmo. Examinamos a dependência de tais perfis nos parâmetros de controle e a estabilidade de feixes levemente descasados dos perfis de equilíbrio. Embora os detalhes da dinâmica dos feixes dependam das condições iniciais, feixes descasados sempre evoluem para padrões espaço-temporais incoerentes, independente da precisão adotada em tais condições. Em ambos os sistemas abordados, os modelos podem ser aplicados para estudar pro- pagação de ondas em plasmas com densidades arbitrárias, uma vez que foram construídos sem aproximar a velocidade de propagação da onda eletromagnética pela velocidade da luz no vácuo (algo usual no estudo de plasmas com baixa densidade, do tipo underdense). / In the present analysis we study the weakly nonlinear dynamics of localized electro- magnetic waves in laser-plasma interactions. As these waves are injected into plasmas, they disturb its electronic density and eventually give rise to space-charge fields, which in turn affect back the waves. In other words, their dynamics is coupled. We model the localized wave using an equation for its envelope and we treat the plasma as consisting of a mobile cold electronic fluid and a neutralizing fixed ionic background. We first investigate the longitudinal self-consistent dynamics propagation of laser pul- ses in plasmas. Here the space-charge fields in the plasma are excited in the wake of the pulses, thus being called wakefields. We develop a model consisting of two equations, one for the pulse envelope, another for the wakefield, and the interactions between both are fully taken to account to analyze the pulse time dependent dynamics and stability. Ap- plying effective Lagrangian techniques and the variational approach we derive an equation for the approximated dynamics of a pulse width, which is used in order to obtain some analytical estimates about two limit-cases: wide and narrow pulses. While wide pulses may or may not retain the localized shape depending on their power, narrower pulses always tend to delocalize as time evolves. Next we study the propagation of focused laser beams, taking to account the trans- verse dynamics in a model derived avoiding any assumption on paraxial conditions. This model, directed to the analysis of stationary regimes when observed in the co-moving coordinate of the beam frame, allows us to obtain an equilibrium condition for the beam transverse profiles. We examine the dependence of equilibrium profiles on control para- meters and the stability of beams as one adds small mismatches to the ideally matched equilibrium. Details of beam evolution depend on initial conditions. However, indepen- dently of the precise form of initial conditions, mismatched beams evolve to incoherent space-time patterns. In both systems discussed, the models can be applied to study the wave propagation in plasmas with arbitrary densities, since they were constructed without approximating the group velocity of the wave by the speed of light in vacuum (something usual when studying underdense plasmas).
6

Dinâmica não linear de ondas eletromagnéticas localizadas em interações laser-plasma

Bonatto, Alexandre January 2012 (has links)
Neste trabalho estudamos a dinâmica fracamente não linear de ondas eletromagnéti- cas localizadas em interações laser-plasma. Ao se propagarem, estas ondas perturbam a densidade de elétrons do plasma e eventualmente originam campos elétricos por efeitos de space-charge. Estes campos por sua vez afetam a dinâmica das ondas, ou seja, a dinâmica de ambos é acoplada. Modelamos a onda localizada através de uma equação para seu envelope e tratamos o plasma como um fluído eletrônico frio, com alta mobilidade, e um fundo iônico fixo neutralizador . Inicialmente investigamos a dinâmica longitudinal da propagação autoconsistente de pulsos laser em plasmas. Nesta configuração, os campos elétricos no plasma são exci- tados no rastro dos pulsos, sendo por isto denominados wakefields. Desenvolvemos um modelo composto por duas equações, uma para o envelope do pulso laser e outra para o wakefield, no qual as interações entre ambos são plenamente consideradas na análise da evolução temporal e da estabilidade do pulso. Aplicando técnicas de lagrangeano efetivo e o método variacional obtemos uma equação para a dinâmica aproximada da largura dos pulsos, utilizada para fazer estimativas analíticas sobre dois casos-limite: pulsos largos e pulsos estreitos. Enquanto pulsos largos podem ou não manter a sua forma localizada de- pendendo da sua potência, pulsos muito estreitos sempre tendem a se dispersar à medida que o tempo avança. Em seguida estudamos a propagação de feixes laser focalizados, incluindo a dinâmica transversal em um modelo desenvolvido sem o uso da aproximação paraxial. Este mo- delo, direcionado à análise de regimes estacionários quando observados no referencial do feixe, nos permite obter uma condição de equilíbrio para os perfis transversais do mesmo. Examinamos a dependência de tais perfis nos parâmetros de controle e a estabilidade de feixes levemente descasados dos perfis de equilíbrio. Embora os detalhes da dinâmica dos feixes dependam das condições iniciais, feixes descasados sempre evoluem para padrões espaço-temporais incoerentes, independente da precisão adotada em tais condições. Em ambos os sistemas abordados, os modelos podem ser aplicados para estudar pro- pagação de ondas em plasmas com densidades arbitrárias, uma vez que foram construídos sem aproximar a velocidade de propagação da onda eletromagnética pela velocidade da luz no vácuo (algo usual no estudo de plasmas com baixa densidade, do tipo underdense). / In the present analysis we study the weakly nonlinear dynamics of localized electro- magnetic waves in laser-plasma interactions. As these waves are injected into plasmas, they disturb its electronic density and eventually give rise to space-charge fields, which in turn affect back the waves. In other words, their dynamics is coupled. We model the localized wave using an equation for its envelope and we treat the plasma as consisting of a mobile cold electronic fluid and a neutralizing fixed ionic background. We first investigate the longitudinal self-consistent dynamics propagation of laser pul- ses in plasmas. Here the space-charge fields in the plasma are excited in the wake of the pulses, thus being called wakefields. We develop a model consisting of two equations, one for the pulse envelope, another for the wakefield, and the interactions between both are fully taken to account to analyze the pulse time dependent dynamics and stability. Ap- plying effective Lagrangian techniques and the variational approach we derive an equation for the approximated dynamics of a pulse width, which is used in order to obtain some analytical estimates about two limit-cases: wide and narrow pulses. While wide pulses may or may not retain the localized shape depending on their power, narrower pulses always tend to delocalize as time evolves. Next we study the propagation of focused laser beams, taking to account the trans- verse dynamics in a model derived avoiding any assumption on paraxial conditions. This model, directed to the analysis of stationary regimes when observed in the co-moving coordinate of the beam frame, allows us to obtain an equilibrium condition for the beam transverse profiles. We examine the dependence of equilibrium profiles on control para- meters and the stability of beams as one adds small mismatches to the ideally matched equilibrium. Details of beam evolution depend on initial conditions. However, indepen- dently of the precise form of initial conditions, mismatched beams evolve to incoherent space-time patterns. In both systems discussed, the models can be applied to study the wave propagation in plasmas with arbitrary densities, since they were constructed without approximating the group velocity of the wave by the speed of light in vacuum (something usual when studying underdense plasmas).

Page generated in 0.0818 seconds