Spelling suggestions: "subject:"plasminogen activation system"" "subject:"plasminogens activation system""
1 |
Dérégulation d'origine astrocytaire du système d'activation du plasminogène dans la sclérose en plaques / Plasminogen activation system role in animal models of multiple sclerosisLebas, Héloïse 07 December 2018 (has links)
Le système d’activation du plasminogène (SAP), initialement décrit dans la circulation sanguine, intervient dans la dégradation des caillots de fibrine (fibrinolyse). Ce système permet de convertir un zymogène inactif (le plasminogène) en enzyme active (la plasmine) via l’action de l’activateur tissulaire du plasminogène (tPA), lui-même inhibé par la serpine inhibitrice de l’activateur du plasminogène de type 1 (PAI-1). Il a été suggéré qu’une dérégulation du SAP dans le système nerveux central (SNC) pouvait être un processus physiopathologique dans la sclérose en plaques (SEP). Cependant, l’origine et les conséquences de cette dérégulation restent peu caractérisées dans cette pathologie. Durant cette thèse, nous avons donc cherché à mieux caractériser la dérégulation du SAP dans la SEP et à déterminer son rôle dans la physiopathologie de cette maladie. Les travaux réalisés au cours de ce doctorat ont permis de montrer qu’une forte surexpression de PAI-1 survient dans le SNC lors des phases symptomatiques de modèles murins de SEP, entraînant une inhibition de la fibrinolyse intraparenchymateuse. Cette altération du SAP est une cause de la formation des zones de lésion, et coïncide temporellement avec les phases symptomatiques des modèles murins de SEP. Les astrocytes réactifs pro-inflammatoires sont les responsables de cette surexpression parenchymateuse délétère de PAI-1. Il apparaît qu’une intervention à visée thérapeutique permettant la restauration de l’activité fibrinolytique intraparenchymateuse, via l’inhibition de PAI-1, s’avère bénéfique dans des modèles animaux de SEP. En conclusion, nos travaux révèlent que la présence d’astrocytes réactifs est à l’origine de la surexpression de PAI-1 engendrant l’inhibition de la fibrinolyse intraparenchymateuse constatée dans la SEP. Ce processus physiopathologique délétère est une des causes menant à la formation de zones lésionnelles dans la SEP. / Degradation of fibrin blood clots (fibrinolysis) is mediated by the plasminogen activation system (PAS), initially discovered in the blood. This system allows the inactive plasminogen conversion into active plasmin by tissue-type plasminogen activator (tPA). The plasminogen activator inhibitor type 1 (PAI-1) is able to inhibit tPA. It has been suggested that in the central nervous system (CNS), a PAS dysregulation could be a physiopathological mechanism of multiple sclerosis (MS). However, this dysregulation cause and consequences are poorly described in this disease. This work aimed to characterise the PAS dysregulation occurring in MS, and to better define its role in MS physiopathology. Our results describe a strong PAI-1 overexpression in the CNS during symptomatic periods in animal models of MS, leading to an intraparenchymal fibrinolysis inhibition. The PAS dysregulation is a cause of lesion formation, and temporally coincides with symptomatic periods in these models. Pro-inflammatory reactive astrocytes overexpress PAI-1. It appears that an increase of parenchymal fibrinolysis by inhibiting PAI-1 reduces EAE severity. To conclude, our results highlight a role of reactive astrocytes in MS, leading to an over-expression of PAI-1 and an impairment of parenchymal fibrinolysis. This physiopathological mechanism is implied in lesion formation in MS.
|
2 |
Rôle du système d'activation du plasminogène dans la différenciation des cellules souches embryonnaires de sourisHadadeh, Ola 12 December 2011 (has links)
Le système d’activation du plasminogène (AP) comprenant les protéases uPA et tPA, et leur inhibiteur PAI-1, génère une activité protéolytique dans la matrice extracellulaire et contribue au remodelage tissulaire dans une grande variété de processus physiopathologiques, y compris la myogenèse squelettique, et la différenciation adipocytaire.Nous avons évalué son rôle spécifique dans la différenciation des cellules souches embryonnaires (ES) de souris. On a trouvé que les activités d’uPA et de tPA ainsi que les niveaux protéiques de PAI-1 sont maximaux dans les cellules différenciées, contrairement aux cellules ES indifférenciées où ils sont indétectables et augmentent progressivement dès le jour 3 de la différenciation. La différenciation adipocytaire dans le modèle des cellules ES est inhibée par le traitement par l’amiloride, un inhibiteur spécifique de l’uPA. Egalement, les cellules ES surexprimant une forme active du PAI-1 sous le contrôle d’un système d’expression inductible, montrent des capacités adipogéniques réduites après l’induction du gène. Nos résultats démontrent que le contrôle de l’adipogenèse des cellules ES par le système AP correspond à des étapes successives, différentes, depuis les cellules indifférenciées jusqu’aux cellules bien différenciées. De plus, les capacités de la différenciation adipogénique des cellules pluripotentes induites déficientes en PAI-1 sont augmentées par rapport aux cellules contrôles.Similairement, la myogenèse squelettique est réduite par l’inhibition de l’uPA par l’amiloride ou par la surexpression du PAI-1 durant l’étape terminale de la différenciation du jour 7 au jour 24. Cependant, l’interférence avec l’uPA durant les jours 0 à 3 de la différenciation, stimule la formation des myotubes. Les différenciations cardiomyocyotaire, neuronale, endothéliale et du du muscle lisse ne sont pas affectées par le traitement à l’amiloride ou la surexpression du PAI-1.Nos résultats montrent que le système AP est capable de moduler spécifiquement l’adipogenèse et la myogenèse squelettique des cellules ES par des mécanismes moléculaires successifs différents. / Regulation of the extracellular matrix (ECM) plays an important functional biological role either in physiological or pathological conditions. The plasminogen activation (PA) system, comprising the uPA and tPA proteases and their inhibitor PAI-1, is one of the main suppliers of extracellular proteolytic activity contributing to tissue remodeling. Although its function in development is well documented, its precise role in mouse embryonic stem cell (ESC) differentiationin vitro is unknown. We found that uPA and tPA activities and PAI-1 protein are very low in undifferentiated ESCs and increase strongly during the differentiation, reaching a maximum in well differentiated cells. Adipocyte formation by ESCs is inhibited by amiloride treatment, a specific uPA inhibitor. Likewise, ESCs expressing ectopic PAI-1 under the control of an inducible expression system, display reduced adipogenic capacities after induction of the gene. Our results demonstrate that the control of ESC adipogenesis by the PA system correspond to different successive steps from undifferentiated to well differentiated ESCs. Furthermore, the adipogenic differentiation capacities of PAI-1-/- induced pluripotent stem cells (iPSCs) are augmented as compared to wt iPSCs. Similarly, skeletal myogenesis is decreased by uPA inhibition or PAI-1 overexpression during the terminal step of differentiation. However, interfering with uPA during days 0 to 3 of the differentiation process augments ESC myotube formation. Neither neurogenesis, cardiomyogenesis, endothelial cell nor smooth muscle formation are affected by amiloride or PAI-1 induction. Our results show that the PA system is capable to specifically modulate adipogenesis and skeletal myogenesis of ESCs by successive different molecular mechanisms.
|
Page generated in 0.1052 seconds