Spelling suggestions: "subject:"plasmon polaritons dde surface"" "subject:"plasmon polaritons dee surface""
1 |
Guide plasmonique polymère-métal : composants passifs et actifs pour la photonique intégréeGrandidier, Jonathan 10 December 2009 (has links) (PDF)
Les guides d'onde plasmoniques induits par un ruban diélectrique (DLSPPWs pour "Dielectric Loaded Surface Plasmon Polariton Waveguides") permettent de transmettre à une échelle sub-longueur d'onde, des signaux électriques et plasmoniques (ondes optiques à l'interface entre un métal et un diélectrique) dans la même circuiterie. De plus, l'utilisation d'un ruban de polymère comme diélectrique permet de fonctionnaliser ces DLSPPWs. Cette configuration est par conséquent d'un grand intérêt pour des applications en photonique intégrée. Néanmoins, les DLSPPWs souffrent de pertes importantes en raison de la dissipation dans le métal. Nous abordons le problème en montrant qu'il est possible de compenser les pertes en utilisant une configuration analogue à celle d'un amplificateur optique. Nous mettons d'abord en place les outils théoriques (modèle de l'indice effectif), numériques (méthode différentielle et méthode de la fonction de Green) et expérimentaux (microscopie à fuites radiatives) adaptés à l'optimisation et la caractérisation des DLSPPWs. Une fois le confinement modal maximisé à la longueur d'onde telecom λ=1.55 µm, nous considérons un polymère dopé avec des boîtes quantiques. Le mode plasmon guidé dans le système polymère dopé-métal est excité pendant qu'un laser pompe les boîtes quantiques dans leur état excité. La relaxation des boîtes quantiques par émission stimulée de plasmon-polariton de surface apporte un gain optique. Ce phénomène est caractérisé par microscopie à fuites radiatives dans l'espace direct et dans l'espace réciproque. Cette démonstration représente un élément clé pour la photonique intégrée et l'interconnexion de circuits tout-optiques miniaturisés.
|
2 |
Imagerie et spectroscopie super-résolues dans l'infrarouge / Infrared super-resolved imaging and spectroscopyPeragut, Florian 13 April 2015 (has links)
Nous couplons des sources de rayonnement infrarouge et un spectromètre à transformée de Fourier (FTIR) avec un microscope optique en champ proche (SNOM) à pointe diffusante pour sonder les propriétés optiques locales de la matière avec une résolution spatiale sub-longueur d'onde.Nous étudions l'émission thermique de champ proche d'un échantillon constitué d'une couche d'or recouvrant partiellement du carbure de silicium, puis d'un empilement de nano-couches semi-conductrices. Nous révélons expérimentalement la présence d'ondes de surface se propageant aux différentes interfaces de ces échantillons, en imagerie et en spectroscopie. Nous sondons l'évolution spatiale du spectre de la densité locale d'états électromagnétiques grâce à l'imagerie hyperspectrale super-résolue de l'émission thermique de champ proche. Nous montrons que la résolution spatiale et le contraste entre les structures diminuent lorsque la distance à laquelle la sonde effectue les balayages augmente.Nous couplons notre SNOM et un FTIR avec le rayonnement synchrotron et démontrons la capacité d'un tel couplage de mener des études de nanospectroscopie dans l'infrarouge moyen en l'illustrant sur les échantillons précédemment mentionnés. Nous démontrons l'imagerie térahertz super-résolue à l'aide du rayonnement synchrotron.Nous étudions expérimentalement l'influence de l'illumination sur les images obtenues en SNOM et montrons que la détection de l'émission thermique de champ proche permet d'obtenir des images exemptes de distorsions et donc plus simples à interpréter que celles obtenues en utilisant un laser monochromatique ou l'émission thermique de champ lointain. Nous développons un mode d'imagerie 3D. / We couple infrared sources with a scattering near-field scanning optical microscope (SNOM) combined with a Fourier transform infrared spectrometer (FTIR) in order to probe the local optical properties of matter with sub-wavelength spatial resolution. We study the near-field thermal emission of a surface made of silicon carbide and gold, and then of a semiconductor-based multilayer. We reveal experimentally the presence of surface waves propagating at the different interfaces of these samples, by imaging and spectroscopy. We probe the spatial evolution of the electromagnetic local density of states spectrum thanks to super-resolved hyperspectral imaging of the near-field thermal emission. We show that spatial resolution and contrast between the structures decrease as the distance at which the probe performs the scans increases. We couple our SNOM and FTIR with synchrotron radiation and demonstrate the capability of such coupling to perform nanospectroscopy studies in the mid-infrared range by investigating the samples mentioned above. We demonstrate super-resolved terahertz imaging using synchrotron radiation. We experimentally study the influence of the illumination on the images obtained in SNOM and show that the detection of the near-field thermal emission provides distortion-free images and therefore are easier to interpret than those obtained using a monochromatic laser source or far-field thermal emission. We also develop a 3D imaging technique.
|
3 |
Surface Plasmon Polariton and Wave Guide Modes in a Six Layer Thin Film Stack / Modes dans un empilement de six couches minces : plasmons polaritons de surface et guides d'ondeAchlan, Moustafa 16 May 2018 (has links)
Dans cette thèse, nous étudions les propriétés optiques d'un système multicouche (air-Au-SiO₂-Au-Ti-verre). Les interfaces sont planes et la modélisation est réalisée en utilisant les coefficients de Fresnel à l'interface et la propagation d'ondes planes dans les couches. Deux modèles sont utilisés où l'échantillon est : i) excité par une source à l'infini ; ii) excité par une source locale. Dans l'expérience que nous avons modélisée l'empilement est excité par les électrons tunnel inélastiques dans un microscope à effet tunnel (STM). Dans le modèle, le courant tunnel inélastique est remplacé par un dipôle oscillant vertical. En utilisant ces modèles, nous avons calculé les flux réfléchis (reflectance) et transmis (transmittance) d'une source de lumière à l'infini et le flux transmis de l'excitation locale. La reflectance, transmittance et le flux transmis montrent des modes plasmoniques (surface plasmon polaritons (SPP)) et photoniques (guide d'onde (WG)). A des longueurs d'onde particulières, les courbes de dispersion des SPP et WG présentent un croisement évité. Le choix des épaisseurs d'or et de silice a deux contraintes: une amplitude importante des observables et une large dépendance en longueurs d'onde du vecteur d'onde dans le plan. Nous étudions aussi l'influence des épaisseurs sur les observables. Nous avons trouvé que les observables ont des amplitudes importantes à pour une épaisseur d'or de [10, 90 nm] pour l'empilement de trois couches et de [10, 50 nm] pour celui de six couches. Les modes de guide d'onde apparaissent pour une épaisseur de la couche de silice de >190 nm. Afin de caractériser la localisation du champ dans l'empilement et déterminer la nature du mode, nous avons calculé le champ électrique en fonction de la coordonnée de pénétration z. Nous avons trouvé que pour le mode SPP le champ est localisé à l'interface Au-air, tandis que le champ électrique du guide d'onde est confiné dans la couche de silice. Les résultats théoriques présentés sont en bon accord avec les résultats des études expérimentales menées dans notre groupe. / In this thesis, we investigate the optical properties of a six-layer stack (air-Au-SiO₂-Au-Ti-glass). The interfaces are flat and the modeling is performed using elementary Fresnel expressions at the interface and plane wave propagation in the layers. Two models are used where the sample is: i) excited by a source at infinity (excitation by source at infinity (ESI)); ii) excited by a local source. In the experiments we are modeling this source consists of the inelastic tunneling electrons from a scanning tunneling microscope (STM). In our modeling this source is replaced by a vertical oscillating dipole. Using these two models one calculates the reflected (reflectance) and the transmitted (transmittance) flux from a source at infinity and the transmitted flux of a local source. Surface plasmon polariton (SPP) and wave guide (WG) modes may be identified in the reflectance, transmittance and transmitted flux. In a particular wavelength domain the SPP and WG repel each other giving rise to an avoided crossing. The choice of the gold (Au) and silica (SiO₂) thicknesses of the six-layer stack is guided by two requirements: high amplitude of the observable and wide wavelength dependence of the in-plane wave vector. We also study the influence of the gold and silica thicknesses on the observables. We find that the observables are significant for dAu[10, 90 nm] for the three and dAu[10, 50 nm] for six layer stacks and this predictive study guided the choice of the experimental sample thicknesses. The wave guide mode appears for dSiO₂ >190 nm. The electric field as a function of the penetration coordinate z is calculated in order to characterize the location of the field in the stack and to assign the nature of the modes. We observe that for the SPP the electric field is confined at the Au-air interface whereas, the electric fields corresponding to the WG mode are confined inside SiO₂ layer. Our calculations presented in this work are in good agreement with the experimental measurements performed in our group.
|
4 |
Surface plasmons and hot electrons imaging with femtosecond pump-probe thermoreflectance / Imagerie de plasmons de surface et d’électrons chauds par thermoréflectance pompe-sonde femtosecondeLozan, Olga 26 February 2015 (has links)
Ce travail est consacré à l’étude de la dynamique ultrarapide d’électrons chauds photo-excité dans des structures plasmonique. L’intérêt particulier de ce domaine réside dans le fait que les SPs, en raison de leurs caractéristiques spatio-temporelles spécifique, offrent un nouvel attrait technologique pour les processus de transport d’information ultra-rapide aux nano-échelles. Dans ce contexte, ce manuscrit offre une compréhension et une exploitation de l’une des principales limitations des technologies à base de SP : les pertes par effet Joule. Nous exploitons le fait que le mécanisme d’absorption des plasmons dans les métaux est suivi par la génération d’électrons chauds à l’échelle femtoseconde, ainsi les pertes peuvent être considrées comme une conversion d’énergie plasmon-électrons chauds. Cette conversion d’énergie est mesurée à l’aide d’une technique pompe-sonde laser femtoseconde. Nous lançons des impulsions SP que nous sondons sur des centaines de femtosecondes grace aux variations de permittivité diélectrique induites par le gaz d’électrons chaud accompagnant la propagation de SP. Le profil de température électronique est par conséquent une image de la distribution de densité de puissance de plasmon (absorption) non élargi spatialement et temporellement par diffusion de porteurs d’énergie. Nous avons pu démontrer la capacité de relier la mesure de température électronique à l’absorption du SP, révélant une absorption anormale autour d’une fente nanométrique. Les résultats expérimentaux sont en accord quantitatif avec les prédictions théoriques de la distribution de densité de puissance. Dans une seconde partie, nous avons étudié les pertes plasmoniques et leurs caractéristiques lors de sa propagation sur un film métallique semi-infini. Nous avons déterminé la vitesse de l’onde thermique électronique et son atténuation. Dans la dernière partie, nous utilisons une structure en pointe pour guider adiabatiquement et focaliser le plasmon à l’extrémité. Nous avons démontré ainsi la génération d’un point chaud nanométrique et avons mis en évidence un retard dans l’échauffement des électrons à l’extrémité de la pointe. Les perspectives et les questions ouvertes sont également discutées. / In this work we explored the ultrafast dynamics of photo-excited hot electrons in plasmonic structures. The particular interest of this field resides on the fact surface plasmons (SP), because of their unrivaled temporal and spatial characteristics, provide a technological route for ultrafast information processes at the nanoscale. In this context, this manuscript provides a comprehension and the harnessing of one of the major limitation of the SP-based technologies : absorption losses by Joule heating. We exploit the fact that the mechanism of plasmon absorption in metals is followed by generation of hot electrons at femtosecond time scale, thus losses can be seen as a plasmon-to-hot-electron energy conversion. This energy conversion is measured with femtosecond pump-probe technique. Femtosecond SP pulses are launched and probed over hundred femtoseconds through the permittivity variations induced by the hot-electron gas and which accompany the SP propagation. The measured electron temperature profile is therefore an image of plasmon power density distribution (absorption) not broadened spatially and temporally by energy carrier diffusion. As an important result we demonstrated the capability to link the electronic temperature measurement to the plasmonic absorption, revealing an anomalous light absorption for a sub- slit surroundings, in quantitative agreement with predictions of the power density distribution. In a second part we studied plasmon losses and their characteristics when they propagate on semi-infinite metal film. We determined the electronic thermal wave velocity and damping. In the last part we used a focusing taper-structure to adiabatically guide and focus the plasmon at the apex. Was demonstrated the generation of a nanoscale hot spot and put in evidence a delayed electron heating at the taper apex. Perspectives and the remaining open questions are also discussed.
|
5 |
Atomes et Nanostructures: <br />Dispositif de lithographie atomique et Réponse Optique d'ouvertures sub-longueur d'ondeGay, Guillaume 23 June 2006 (has links) (PDF)
Cette thèse porte sur la manipulation d'atomes à l'aide d'objets<br /> nanostructurés. Deux études expérimentales liées à cette<br /> thématique ont été menées. La première a été consacrée à la mise<br /> en place d'un jet de césium intense refroidi transversalement par<br /> mélasse optique et à sa caractérisation. Cette souce a été<br /> appliquée à la lithographie atomique de film d'or \emph{via} des<br /> monocouches moléculaires auto-assemblées. Après une<br /> caractérisation des différentes étapes du procédé, nous avons<br /> employé des masques matériels pour graver des motifs de taille<br /> sub-micrométrique sur la surface d'or. Nous avons obtenu des<br /> trous de 250 nm de diamètre, cette résolution étant limitée par la<br /> taille des masques employés. <br /><br /> Le deuxième ensemble d'expériences concerne la réponse optique<br /> d'ouvertures sub-l'ongueur d'onde dans des films minces<br /> métalliques. Nous avons d'abord mis en place un dispositif<br /> d'imagerie par microscopie de fluorescence qui nous a permis de<br /> cartographier le champ lumineux mis en forme par une fente \SLO<br /> entourée par des sillons périodiques. Pour mieux comprendre les<br /> méchanismes en jeu dans la transmission de la lumière par ces<br /> éléments, les propriétés de structures simples on été étudiées par<br /> interférométrie en champ lointain. Les résultats quantitatif<br /> obtenus permettent une description phénoménologique des procédés<br /> élémentaires en jeu dans ces éléments qui peut être comparée aux<br /> modèles théoriques.
|
Page generated in 0.0798 seconds