Spelling suggestions: "subject:"platelet activating 3factor 1receptor"" "subject:"platelet activating 3factor 2receptor""
1 |
Genetic Ablation of the Platelet Activating Factor Receptor Does Not Impair Learning and Memory in Wild-Type Mice or Alter Amyloid Plaque Number in a Transgenic Model of Alzheimer’s DiseasePeshdary, Vian 25 January 2012 (has links)
We have recently established that aberrant alkylacylglycerophosphocholine metabolism results in the increased tissue concentration of platelet activating factors (PAFs) in the temporal cortex of Alzheimer Disease (AD) patients and in TgCRND8 mice over-expressing mutant human amyloid precursor protein. PAF lipids activate a G-protein coupled receptor (PAFR) reported to be expressed by microglia and subsets of neurons in rat. It is not known whether this same expression pattern is recapitulated in mice however, as the expression has only been inferred by use of pharmacological PAFR antagonists, many of which impact on both PAFR-dependent and PAFR-independent signalling pathways. PAFR plays a role in long term potentiation (LTP) induction in rats. PAFR has also been implicated in behavioural indices of spatial learning and memory in rats. Contradictory reports using mice provide ambiguity regarding the role of PAFR in LTP induction in mice. To assess whether PAFR is expressed in murine neurons, I localized PAFR mRNA in wild-type C57BL/6 mice using PAFR KO mice as a negative control. I further showed that the loss of PAFR did not impair learning and memory although this assessment must be considered preliminary as the behavioural test employed was not optimized to detect changes in learning and memory of C57BL/6 mice over time adequately.Finally, I showed that the loss of PAFR in TgCRND8 mouse model of AD had no impact upon Aβ plaque number. My observations suggest that PAFR is restricted to microglial-like cells in mouse hippocampus and as such, it may not play a role in learning and memory.
|
2 |
Genetic Ablation of the Platelet Activating Factor Receptor Does Not Impair Learning and Memory in Wild-Type Mice or Alter Amyloid Plaque Number in a Transgenic Model of Alzheimer’s DiseasePeshdary, Vian 25 January 2012 (has links)
We have recently established that aberrant alkylacylglycerophosphocholine metabolism results in the increased tissue concentration of platelet activating factors (PAFs) in the temporal cortex of Alzheimer Disease (AD) patients and in TgCRND8 mice over-expressing mutant human amyloid precursor protein. PAF lipids activate a G-protein coupled receptor (PAFR) reported to be expressed by microglia and subsets of neurons in rat. It is not known whether this same expression pattern is recapitulated in mice however, as the expression has only been inferred by use of pharmacological PAFR antagonists, many of which impact on both PAFR-dependent and PAFR-independent signalling pathways. PAFR plays a role in long term potentiation (LTP) induction in rats. PAFR has also been implicated in behavioural indices of spatial learning and memory in rats. Contradictory reports using mice provide ambiguity regarding the role of PAFR in LTP induction in mice. To assess whether PAFR is expressed in murine neurons, I localized PAFR mRNA in wild-type C57BL/6 mice using PAFR KO mice as a negative control. I further showed that the loss of PAFR did not impair learning and memory although this assessment must be considered preliminary as the behavioural test employed was not optimized to detect changes in learning and memory of C57BL/6 mice over time adequately.Finally, I showed that the loss of PAFR in TgCRND8 mouse model of AD had no impact upon Aβ plaque number. My observations suggest that PAFR is restricted to microglial-like cells in mouse hippocampus and as such, it may not play a role in learning and memory.
|
3 |
Genetic Ablation of the Platelet Activating Factor Receptor Does Not Impair Learning and Memory in Wild-Type Mice or Alter Amyloid Plaque Number in a Transgenic Model of Alzheimer’s DiseasePeshdary, Vian 25 January 2012 (has links)
We have recently established that aberrant alkylacylglycerophosphocholine metabolism results in the increased tissue concentration of platelet activating factors (PAFs) in the temporal cortex of Alzheimer Disease (AD) patients and in TgCRND8 mice over-expressing mutant human amyloid precursor protein. PAF lipids activate a G-protein coupled receptor (PAFR) reported to be expressed by microglia and subsets of neurons in rat. It is not known whether this same expression pattern is recapitulated in mice however, as the expression has only been inferred by use of pharmacological PAFR antagonists, many of which impact on both PAFR-dependent and PAFR-independent signalling pathways. PAFR plays a role in long term potentiation (LTP) induction in rats. PAFR has also been implicated in behavioural indices of spatial learning and memory in rats. Contradictory reports using mice provide ambiguity regarding the role of PAFR in LTP induction in mice. To assess whether PAFR is expressed in murine neurons, I localized PAFR mRNA in wild-type C57BL/6 mice using PAFR KO mice as a negative control. I further showed that the loss of PAFR did not impair learning and memory although this assessment must be considered preliminary as the behavioural test employed was not optimized to detect changes in learning and memory of C57BL/6 mice over time adequately.Finally, I showed that the loss of PAFR in TgCRND8 mouse model of AD had no impact upon Aβ plaque number. My observations suggest that PAFR is restricted to microglial-like cells in mouse hippocampus and as such, it may not play a role in learning and memory.
|
4 |
Genetic Ablation of the Platelet Activating Factor Receptor Does Not Impair Learning and Memory in Wild-Type Mice or Alter Amyloid Plaque Number in a Transgenic Model of Alzheimer’s DiseasePeshdary, Vian January 2012 (has links)
We have recently established that aberrant alkylacylglycerophosphocholine metabolism results in the increased tissue concentration of platelet activating factors (PAFs) in the temporal cortex of Alzheimer Disease (AD) patients and in TgCRND8 mice over-expressing mutant human amyloid precursor protein. PAF lipids activate a G-protein coupled receptor (PAFR) reported to be expressed by microglia and subsets of neurons in rat. It is not known whether this same expression pattern is recapitulated in mice however, as the expression has only been inferred by use of pharmacological PAFR antagonists, many of which impact on both PAFR-dependent and PAFR-independent signalling pathways. PAFR plays a role in long term potentiation (LTP) induction in rats. PAFR has also been implicated in behavioural indices of spatial learning and memory in rats. Contradictory reports using mice provide ambiguity regarding the role of PAFR in LTP induction in mice. To assess whether PAFR is expressed in murine neurons, I localized PAFR mRNA in wild-type C57BL/6 mice using PAFR KO mice as a negative control. I further showed that the loss of PAFR did not impair learning and memory although this assessment must be considered preliminary as the behavioural test employed was not optimized to detect changes in learning and memory of C57BL/6 mice over time adequately.Finally, I showed that the loss of PAFR in TgCRND8 mouse model of AD had no impact upon Aβ plaque number. My observations suggest that PAFR is restricted to microglial-like cells in mouse hippocampus and as such, it may not play a role in learning and memory.
|
5 |
Implication of mirna-149 in platelet-activating-factor-receptor-mediated effects on lung cancer growth and treatment efficacyChauhan, Shreepa J. 03 June 2020 (has links)
No description available.
|
6 |
To determine the role of the Platelet activating factor - receptor in FOLFIRINOX therapy-mediated microvesicles particle generationAwasthi, Krishna 08 May 2023 (has links)
No description available.
|
7 |
Modulation orthostérique et allostérique du PAFR par des molécules synthétiquesNoël, Cynthia Jenny January 2008 (has links)
Le PAF (facteur d'activation des plaquettes) est un médiateur lipidique de l'inflammation très puissant impliqué dans plusieurs conditions pathophysiologiques.Le PAF agit principalement via un seul récepteur, le PAFR qui appartient à la famille des récepteurs couplés aux protéines G, les GPCRs. Le"two state model" assume que les GPCRs existent dans un état d'équilibre entre un état inactif (R) et un état actif (R*). L'isomérisation de R vers R* peut arriver de façon spontanée, c'est à dire indépendamment de la liaison d'un agoniste. Dans ces travaux de recherche, nous avons tenté de déterminer la propriété antagoniste et agoniste inverse des molécules orthostériques (WEB2086, PCA4248, FR49175, bromure d'octylonium, CV3988 et le Trans BTP dioxolane) à activer la voie des MAPK ainsi que le cycle biochimique des inositols phosphates dans la lignée cellulaire HEK 293 transfectée de façon stable avec le récepteur du PAF. De plus, l'activité potentiellement allostérique sur le PAFR de modulateurs synthétiques tels le THG-315, le THG-316 et MAREK a également été investiguée dans la même lignée cellulaire. Finalement, des surnageants d'hybridome 9H1/1C1, 9F5/1H4, 9F5/1H4, 9F5/1F8, 9F5/2B3 et 9F5/2E4 contenant des anticorps monoclonaux, dirigés tous contre un peptide qui équivaut à la région C-terminale de la troisième boucle extracellulaire du PAFR: GFQDSKfHQA ont également été utilisés, afin : (1) de déterminer le meilleur clone en terme d'affinité et de spécificité et (2) effectuer des tests pour savoir s'ils possèdent des propriétés agonistes ou antagonistes sur le PAFR. En conclusion, les résultats obtenus nous indiquent que : (1) l'efficacité des molécules orthostériques à antagoniser les réponses induites par le PAF dépend de leur nature et de leur concentration, (2) les modulateurs potentiellement allostériques utilisés ne modulent aucune des voies majoritairement connues pour être activées par le PAFR, et (3) qu'il n'y a aucun marquage spécifique du PAFR avec les surnageants d'hybridomes utilisés.
|
8 |
The Purification and Identification of Interactors to Elucidate Novel Connections in the HEK 293 Cell LineHawley, Brett 23 November 2012 (has links)
The field of proteomics studies the structure and function of proteins in a large scale and high throughput manner. My work in the field of proteomics focuses on identifying interactions between proteins and discovering novel interactions. The identification of these interactions provides new information on metabolic and disease pathways and the working proteome of a cell. Cells are lysed and purified using antibody based affinity purification followed by digestion and identification using an HPLC coupled to a mass spectrometer. In my studies, I looked at the interaction networks of several AD related genes (Apolipoprotein E, Clusterin variant 1 and 2, Low-density lipoprotein receptor, Phosphatidylinositol binding clathrin assembly protein, Alpha-synuclein and Platelet-activating factor receptor) and an endosomal recycling pathway involved in cholesterol metabolism (Eps15 homology domain 1,2 and 4, Proprotein convertase subtilisin/kexin type 9 and Low-density lipoprotein receptor). Several novel and existing interactors were identified and these interactions were validated using co-immunopurification, which could be the basis for future research.
|
9 |
The Purification and Identification of Interactors to Elucidate Novel Connections in the HEK 293 Cell LineHawley, Brett 23 November 2012 (has links)
The field of proteomics studies the structure and function of proteins in a large scale and high throughput manner. My work in the field of proteomics focuses on identifying interactions between proteins and discovering novel interactions. The identification of these interactions provides new information on metabolic and disease pathways and the working proteome of a cell. Cells are lysed and purified using antibody based affinity purification followed by digestion and identification using an HPLC coupled to a mass spectrometer. In my studies, I looked at the interaction networks of several AD related genes (Apolipoprotein E, Clusterin variant 1 and 2, Low-density lipoprotein receptor, Phosphatidylinositol binding clathrin assembly protein, Alpha-synuclein and Platelet-activating factor receptor) and an endosomal recycling pathway involved in cholesterol metabolism (Eps15 homology domain 1,2 and 4, Proprotein convertase subtilisin/kexin type 9 and Low-density lipoprotein receptor). Several novel and existing interactors were identified and these interactions were validated using co-immunopurification, which could be the basis for future research.
|
10 |
The Purification and Identification of Interactors to Elucidate Novel Connections in the HEK 293 Cell LineHawley, Brett January 2012 (has links)
The field of proteomics studies the structure and function of proteins in a large scale and high throughput manner. My work in the field of proteomics focuses on identifying interactions between proteins and discovering novel interactions. The identification of these interactions provides new information on metabolic and disease pathways and the working proteome of a cell. Cells are lysed and purified using antibody based affinity purification followed by digestion and identification using an HPLC coupled to a mass spectrometer. In my studies, I looked at the interaction networks of several AD related genes (Apolipoprotein E, Clusterin variant 1 and 2, Low-density lipoprotein receptor, Phosphatidylinositol binding clathrin assembly protein, Alpha-synuclein and Platelet-activating factor receptor) and an endosomal recycling pathway involved in cholesterol metabolism (Eps15 homology domain 1,2 and 4, Proprotein convertase subtilisin/kexin type 9 and Low-density lipoprotein receptor). Several novel and existing interactors were identified and these interactions were validated using co-immunopurification, which could be the basis for future research.
|
Page generated in 0.1199 seconds