Spelling suggestions: "subject:"calating."" "subject:"caculating.""
141 |
A genetic algorithm approach to production scheduling in an ion plating cellAu, Kam-chi, Gigi., 區淦芝. January 2004 (has links)
published_or_final_version / abstract / Industrial and Manufacturing Systems Engineering / Master / Master of Philosophy
|
142 |
Chemical reactions at the interfaces of semiconductors and catalysts with solutions: I. Tin-palladium catalysts in electroless copper plating. II. Dissolution of crystalline gallium-arsenide in solutions containing complexing agents.Pierson, Bruce Gregory. January 1989 (has links)
The concentration of tin and palladium in catalysts used in electroless copper plating have been determined by Rutherford backscattering spectrometry with high energy (2-5) MeV ⁴He⁺. The tin:palladium ratio in the catalyst decreases when exposed to an alkaline solution. X-ray photoelectron spectroscopy has confirmed this result and has shown the palladium in the catalyst is present as palladium metal and the tin is present, probably as an oxidized species, to a depth of about 30 Å. Catalysts for the electroless plating of copper are obtained by the reaction of Pd(II) and Sn(II). The extent of the reaction and the concentrations of the reaction products depend on the solution conditions. Conflicting results obtained in previous investigations of tin-palladium catalysts can be explained on this basis. Single crystals of gallium arsenide (GaAs(100)) were found to dissolve in synthetic lung fluid (Gamble solution). The concentrations of arsenic and gallium in the Gamble solution as well as the arsenic:gallium ratio on the GaAs surface increased continuously as the time of exposure to the Gamble solution increased. X-ray photoelectron spectroscopic studies of the gallium arsenide surface showed that arsenic migrated to the surface and it was oxidized to a species resembling As₂O₃ and finally solubilized by the Gamble solution. The solubility of gallium was governed primarily by the formation of stable complexes with the citrate and phosphate ions in the Gamble solution. Zinc that was present in the single crystals of gallium arsenide also migrated to the surface.
|
143 |
OPTICAL AND ELECTRICAL PROPERTIES OF AMORPHOUS SILICON PREPARED BY CHEMICAL VAPOR DEPOSITION AND PLASMA HYDROGENATION.Scheidegger, Gary Louis. January 1983 (has links)
No description available.
|
144 |
The effects of heat treatment on microindentation hardness, abrasion and corrosion resistance of electroless nickel coatingsSchotter, Daniel Keith, 1955- January 1988 (has links)
A study has been carried out to investigate the effects of heat treatment on microindentation hardness, abrasion and corrosion resistance of Electroless Nickel coatings. In particular, a proprietary coating system, NIKLAD 794 has been investigated. Samples of 4130 steel have been plated according to manufacturer's specifications. The plated samples have then been subjected to an array of heat treatment temperatures and times. Post heat treatment tests have been conducted including Taber Abrasion testing, salt fog chamber testing, and Knoop microindentation hardness testing. Results of the individual tests have been compared to determine the effects of heat treatment on, and the interactions between, the parameters examined.
|
145 |
Effect of Engineered Surfaces on Valve PerformancePope, Larry G. 12 1900 (has links)
Performance of air operated valves is a major maintenance concern in process industries. Anecdotal information indicates that reliability of some high maintenance valves has been improved by using an ion deposition process to achieve engineered surfaces on selected components. This project compared friction for various surface treatments of selected valve components. Results indicate valve performance may be slightly more consistent when an engineered surface is applied in the valve packing area; however surface treatment in this area does not appear to have a dominant affect on reducing valve friction. Results indicate a linear relation between stem friction and torque applied to packing flange nuts, and even after a valve is in service, controlled packing adjustments can be made without significantly changing valve stroke time.
|
146 |
Gold plating vid implementering av EU-direktiv : Nationellt överskridande av miniminivån vid implementering av minimiharmoniseringsdirektiv i ljuset av det svenska genomförandet av IDD / The use of gold plating when implementing EU directives : National exceedance of the minimum level when implementing directives with aim to achieving minimum harmonization in view of the Swedish implementation of IDDMellbye, Hanne January 2019 (has links)
När en medlemsstats genomförande av ett EU-direktiv innebär tillförsel av ytterligare bestämmelser vilka medför en förhöjd skyddsnivå i förhållande till direktivet, innebär det utförande av gold plating. Eftersom förfarandet leder till särreglering i förhållande till andra medlemsstater uppstår därmed en konflikt med EU:s harmoniseringsambitioner på den inre marknaden. Det saknas emellertid en allmängiltig definition av gold plating; kommissionens definition är exempelvis snävare än hur definitionen görs gällande i andra fall. Uppsatsen har till syfte att besvara hur gold plating bör definieras och för att ge ytterligare förståelse för begreppet undersöks det svenska genomförandet av IDD, vilket innebar strängare nationella krav i förhållande till direktivet på ett antal områden. IDD beskrivs som ett minimiharmoniseringsdirektiv, men är utformat enligt en lagstiftningsmodell som förutsätter ett enhetligt lagstiftningsgenomförande i medlemsstaterna. IDD kan även relateras till ett flertal rättsområden inom vilka fullharmonisering råder, exempelvis finansmarknadsområdet och direktivet MiFID II. I uppsatsens analys framförs ett ställningstagande om att en definition av gold plating bör tydliggöra åtskillnad mellan å ena sidan ett utvidgat tillämpningsområde, å andra sidan tillförsel av materiella krav, eftersom de olika förfarandena innebär olika juridiska problem. Det framhålls dessutom att en bred och deskriptiv definition av gold plating kan vara användbar vid identifiering av direktivs miniminivå. Analysen innebär vidare några kommentarer avseende IDD:s harmoniseringsgrad och en övergripande kategorisering av de avvikelser från miniminivån som har identifierats i genomförandet av direktivet. Därtill framhålls att ett nationellt införande av en norm eller princip som innebär att minimikraven ska vara vägledande vid genomförande av minimiharmoniseringsdirektiv kan strida mot direktivet i det enskilda fallet. Med tanke på EU:s höga regleringsaktivitet och det faktum att medlemsstaternas lagstiftningsmakt har fått ta ett steg tillbaka, kan gold plating mer eller mindre vara en förutsättning för åtgärdade av nationella reformbehov. För att säkerställa att gold plating utförs i enlighet med direktivet och EU-rätten i övrigt, krävs ett tidigare nationellt engagemang och deltagande i den EU-rättsliga beslutsprocessen.
|
147 |
Properties of magnetic layers fabricated by metal vapor vacuum arc (MEVVA) ion implantation into germanium. / CUHK electronic theses & dissertations collectionJanuary 2001 (has links)
by Ranganathan Venugopal. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 150-165). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
148 |
Preparation and characterization of titanium silicide by MEVVA implantation.January 1999 (has links)
by Lai Kwong-Yu. / Thesis submitted in: December 1998. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 90-101). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Metal Silicides --- p.1 / Chapter 1.2 --- Titanium Silicide --- p.8 / Chapter 1.3 --- Goal Of This Project --- p.10 / Chapter 2 --- Sample Preparation And Experimental Methods --- p.12 / Chapter 2.1 --- MEVVA Implantation --- p.12 / Chapter 2.2 --- Sample Preparation --- p.15 / Chapter 2.2.1 --- Implantation Condition --- p.15 / Chapter 2.2.2 --- Thermal Treatment --- p.19 / Chapter 2.3 --- Characterization Methods --- p.20 / Chapter 2.3.1 --- Sheet Resistivity Measurement --- p.22 / Chapter 2.3.2 --- X-Ray Diffraction (XRD) --- p.25 / Chapter 2.3.3 --- Rutherford Backscattering Spectroscopy (RBS) --- p.28 / Chapter 2.3.4 --- Transmission Electron Microscopy (TEM) --- p.31 / Chapter 3 --- Characterization of As-implanted Samples --- p.36 / Chapter 3.1 --- Introduction --- p.36 / Chapter 3.2 --- Dose Dependence Of As-implanted Samples --- p.37 / Chapter 3.2.1 --- Sheet Resistance Measurement --- p.37 / Chapter 3.2.2 --- X-Ray Diffraction (XRD) --- p.40 / Chapter 3.2.3 --- Rutherford Backscattering Spectroscopy (RBS) --- p.40 / Chapter 3.3 --- Implant Beam Current Dependence Of As-implanted Samples --- p.43 / Chapter 3.3.1 --- Sheet Resistance Measurement --- p.43 / Chapter 3.3.2 --- X-Ray Diffraction (XRD) --- p.44 / Chapter 3.3.3 --- Rutherford Backscattering Spectroscopy (RBS) --- p.46 / Chapter 3.4 --- Transmission Electron Microscopy (TEM) --- p.48 / Chapter 3.5 --- Summary --- p.52 / Chapter 4 --- Characterization of Annealed Samples --- p.57 / Chapter 4.1 --- Introduction --- p.57 / Chapter 4.2 --- Dose Dependence Of Annealed Samples --- p.58 / Chapter 4.2.1 --- Sheet Resistance Measurements --- p.58 / Chapter 4.2.2 --- X-Ray Diffraction (XRD) --- p.61 / Chapter 4.2.3 --- Rutherford Backscattering Spectroscopy (RBS) --- p.63 / Chapter 4.3 --- Implant Beam Current Dependence Of Annealed Samples --- p.66 / Chapter 4.3.1 --- Sheet Resistance Measurement --- p.66 / Chapter 4.3.2 --- X-Ray Diffraction (XRD) --- p.68 / Chapter 4.3.3 --- Rutherford Backscattering Spectroscopy (RBS) --- p.70 / Chapter 4.4 --- Annealing Temperature Dependence Of Annealed Samples --- p.71 / Chapter 4.4.1 --- Sheet Resistance Measurement --- p.71 / Chapter 4.4.2 --- X-Ray Diffraction (XRD) --- p.73 / Chapter 4.4.3 --- Rutherford Backscattering Spectroscopy (RBS) --- p.75 / Chapter 4.5 --- Annealing Time Dependence Of Annealed Samples --- p.78 / Chapter 4.5.1 --- Sheet Resistance Measurement --- p.78 / Chapter 4.5.2 --- X-Ray Diffraction (XRD) --- p.79 / Chapter 4.5.3 --- Rutherford Backscattering Spectroscopy (RBS) --- p.81 / Chapter 4.6 --- Transmission Electron Microscopy (TEM) --- p.82 / Chapter 4.7 --- Summary --- p.84 / Chapter 5 --- Conclusion --- p.87 / Chapter 5.1 --- Main Results Of This Work --- p.87 / Chapter 5.2 --- Suggestions To Future Works --- p.89 / Bibliography
|
149 |
study of MEVVA-implanted copper and nickel in fused silica =: 通過金屬蒸氣眞空弧放電子源把銅和鎳注入熔融石英的硏究. / 通過金屬蒸氣眞空弧放電子源把銅和鎳注入熔融石英的硏究 / A study of MEVVA-implanted copper and nickel in fused silica =: Tong guo jin shu zheng qi zhen kong hu fang dian zi yuan ba tong he nie zhu ru rong rong shi ying de yan jiu. / Tong guo jin shu zheng qi zhen kong hu fang dian zi yuan ba tong he nie zhu ru rong rong shi ying de yan jiuJanuary 2000 (has links)
by Kong Lim Pun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references. / Text in English; abstracts in English and Chinese. / by Kong Lim Pun. / ABSTRACT --- p.i / 摘要 --- p.iii / ACNOWLEDGEMENT --- p.iv / TALE OF CONTENTS --- p.v / LIST OF FIGURES --- p.ix / LIST OF TABLES --- p.xi / Chapter CHAPTER 1 --- Introduction / Chapter 1.1 --- Nanoparticles and nanostructural materials --- p.1 / Chapter 1.2 --- Materials of copper-implanted and nickel-implanted fused silica --- p.4 / Chapter 1.2.1 --- Overview --- p.4 / Chapter 1.2.2 --- Formation of nanoparticles --- p.5 / Chapter 1.2.3 --- Optical properties of the material --- p.9 / Chapter 1.3 --- Goals of the project --- p.12 / Reference --- p.13 / Chapter CHAPTER 2 --- Background of Study / Chapter 2.1 --- Introduction --- p.15 / Chapter 2.2 --- Optical absorption of metal nanocluster composite glasses --- p.16 / Chapter 2.2.1 --- Dielectric constant --- p.16 / Chapter 2.2.2 --- The features of surface plasmon resonance peak --- p.16 / Chapter 2.3 --- Third-order optical nonlinearity of metal nanocluster composite glasses --- p.17 / Chapter 2.3.1 --- Classical field confinement --- p.19 / Chapter 2.3.2 --- Quantum confinement --- p.21 / Chapter 2.3.2.1 --- Intraband transitions --- p.21 / Chapter 2.3.2.2 --- Interband transitions --- p.22 / Chapter 2.3.2.3 --- Hot-electron transitions --- p.22 / Chapter 2.4 --- Preparation Methods of MNCG(s) --- p.23 / Chapter 2.4.1 --- Ion implantation --- p.23 / Chapter 2.4.2 --- Ion exchange --- p.23 / Chapter 2.4.3 --- Sputtering deposition --- p.24 / Chapter 2.4.4 --- Melt -quenching and heat-treatment processes --- p.25 / Chapter 2.4.5 --- Ion-beam assisted deposition --- p.25 / Chapter 2.5 --- Applications --- p.25 / Reference --- p.27 / Chapter CHAPTER 3 --- Instrumentation / Chapter 3.1 --- Introduction --- p.29 / Chapter 3.2 --- Metal Vapour Vacuum Arc (MEVVA) ion source implantation --- p.29 / Chapter 3.2.1 --- Background of MEVVA ion source --- p.29 / Chapter 3.2.2 --- Characteristics of MEVVA ion source --- p.32 / Chapter 3.2.3 --- Implantation conditions --- p.33 / Chapter 3.3 --- X-ray photoelectron spectroscopy --- p.34 / Chapter 3.3.1 --- Theory --- p.34 / Chapter 3.3.2 --- Qualitative analysis --- p.38 / Chapter 3.3.2.1 --- Chemical shift peaks --- p.40 / Chapter 3.3.2.2 --- Auger peaks --- p.40 / Chapter 3.3.2.3 --- Energy loss peaks --- p.40 / Chapter 3.3.3 --- Quantitative analysis --- p.41 / Chapter 3.3.3.1 --- Homogeneous system --- p.41 / Chapter 3.3.3.2 --- Determination of layer thickness --- p.45 / Chapter 3.3.4 --- Instrumental components of XPS --- p.47 / Chapter 3.3.4.1 --- Sample introduction system --- p.47 / Chapter 3.3.4.2 --- X-ray source --- p.49 / Chapter 3.3.5 --- Application to metal nanoclusters composite glasses --- p.49 / Chapter 3.3.5.1 --- Compositional analysis --- p.50 / Chapter 3.3.5.2 --- Depth profiling --- p.50 / Chapter 3.3.5.3 --- Auger parameter --- p.50 / Chapter 3.4 --- Transmission electron microscopy --- p.53 / Chapter 3.4.1 --- Basic instrumentation of TEM --- p.53 / Chapter 3.4.2 --- Preparation of TEM cross section specimen --- p.54 / Chapter 3.4.2.1 --- Cutting --- p.54 / Chapter 3.4.2.2 --- "Disc-cutting, grinding, dimpling " --- p.54 / Chapter 3.4.2.3 --- Ion beam thinning --- p.56 / Chapter 3.4.3 --- Image contrast of TEM --- p.56 / Chapter 3.4.4 --- Basic operations of TEM --- p.57 / Chapter 3.4.4.1 --- Bright field and dark field images --- p.57 / Chapter 3.4.4.2 --- Selected area diffraction (SAD) --- p.58 / Chapter 3.4.4.3 --- Convergent Beam Electron Diffraction --- p.59 / Reference --- p.60 / Chapter CHAPTER 4 --- Composition and Nano structure of Copper-implanted Fused Silica / Chapter 4.1 --- Introduction --- p.62 / Chapter 4.2 --- The Atomic Distribution and Chemical State of Copper Nanocluster --- p.64 / Chapter 4.3 --- TEM Studies of Copper Nanoclusters --- p.70 / Chapter 4.4 --- Theoretical Calculation on Ratio of Surface to Bulk Atoms of Copper Nanocluster --- p.73 / Chapter 4.5 --- Conclusions --- p.74 / Reference --- p.77 / Chapter CHAPTER 5 --- Composition and Nanostructure of Nickel-implanted Fused Silica / Chapter 5.1 --- Introduction --- p.79 / Chapter 5.2 --- The distribution of nickel nanoclusters --- p.80 / Chapter 5.3 --- TEM studies of nickel nanoclusters --- p.81 / Chapter 5.4 --- Chemical state of nickel clusters --- p.87 / Chapter 5.5 --- Discussion --- p.90 / Chapter 5.6 --- Conclusion --- p.90 / Reference --- p.92 / Chapter CHAPTER 6 --- Conclusions --- p.94
|
150 |
HPLC method development for the analysis of electroplating baths used in the electronic industry.January 2002 (has links)
Sin Wai-Chu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references. / Abstracts in English and Chinese. / ABSTRACT --- p.i / 論文摘要 --- p.ii / ACKNOWLEDGEMENT --- p.iii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Electroplating history --- p.1 / Chapter 1.2 --- Electroplating bath --- p.7 / Chapter 1.3 --- Electroplating analytical methods --- p.8 / Chapter 1.3.1 --- Metal content and elemental impurities analysis --- p.10 / Chapter 1.3.2 --- "Metal complex, inorganic anion and cation analysis" --- p.11 / Chapter 1.3.3 --- Organic brighteners and levelers analysis --- p.12 / Chapter 1.4 --- HPLC literature review --- p.15 / Chapter 1.5 --- My research work --- p.16 / Chapter 1.6 --- References for Chapter 1 --- p.19 / Chapter Chapter 2 --- General Experimental --- p.23 / Chapter 2.1 --- The HPLC System --- p.23 / Chapter 2.2 --- The factors that affect the separation --- p.26 / Chapter 2.2.1 --- The composition of the solvent system --- p.27 / Chapter 2.2.2 --- The selection of column --- p.30 / Chapter 2.2.3 --- The most suitable analytical wavelength for UV detection --- p.34 / Chapter 2.3 --- Challenges in analyzing electroplating baths solution --- p.35 / Chapter 2.3.1 --- High metal content --- p.36 / Chapter 2.3.2 --- Strong ligand or complexing agent --- p.36 / Chapter 2.3.3 --- Interference --- p.37 / Chapter 2.3.4 --- Extreme pH --- p.37 / Chapter 2.3.5 --- Other difficulties --- p.38 / Chapter 2.3.6 --- Maintenance of HPLC instrument --- p.38 / Chapter 2.4 --- References for Chapter 2 --- p.38 / Chapter Chapter 3 --- Palladure 200 bath HPLC analysis --- p.41 / Chapter 3.1 --- Introduction --- p.41 / Chapter 3.2 --- Experimental --- p.43 / Chapter 3.3 --- Problems in the existing UV analysis for monitoring Palladure200 process --- p.45 / Chapter 3.4 --- HPLC method development for monitoring Palladure 200 process --- p.49 / Chapter 3.5 --- Analysis of aged Palladure 200 plating bath from production line --- p.55 / Chapter 3.6 --- Conclusion --- p.57 / Chapter 3.7 --- References for Chapter 3 --- p.58 / Chapter Chapter 4 --- Nickel PC3 bath HPLC analysis --- p.59 / Chapter 4.1 --- Introduction --- p.59 / Chapter 4.2 --- Experimental --- p.60 / Chapter 4.3 --- Problems in the existing Titration method for monitoring Nickel PC3 process --- p.62 / Chapter 4.4 --- HPLC method development for monitoring Nickel PC3 process --- p.63 / Chapter 4.4.1 --- Identify individual component of Nickel PC3 process --- p.63 / Chapter 4.4.2 --- Set up a calibration curve for the Nickel PC3 Additive --- p.67 / Chapter 4.4.3 --- Analysis of aged Nickel PC3 plating bath from production line --- p.68 / Chapter 4.5 --- Conclusion --- p.71 / Chapter 4.6 --- References for Chapter 4 --- p.72 / Chapter Chapter 5 --- Solderon SC bath HPLC analysis --- p.73 / Chapter 5.1 --- Introduction --- p.73 / Chapter 5.2 --- Experimental --- p.74 / Chapter 5.3 --- Instability in the existing Cyclic Voltammetric Stripping (CVS) method for monitoring Solderon SC process --- p.76 / Chapter 5.4 --- HPLC method development for monitoring Solderon SC process --- p.77 / Chapter 5.4.1 --- Identify the individual components --- p.77 / Chapter 5.4.2 --- Set up a calibration curve for the Solderon SC Primary --- p.82 / Chapter 5.4.3 --- Analysis of aged Solderon SC plating bath from production line --- p.84 / Chapter 5.5 --- Conclusion --- p.86 / Chapter 5.6 --- References for Chapter 5 --- p.86 / Chapter Chapter 6 --- Copper Gleam PPR bath HPLC analysis --- p.87 / Chapter 6.1 --- Introduction --- p.87 / Chapter 6.2 --- Experimental --- p.89 / Chapter 6.3 --- Problems in the existing Cyclic Voltammetric Stripping (CVS) method for monitoring Copper Gleam PPR process --- p.91 / Chapter 6.4 --- HPLC method development for monitoring Copper Gleam PPR process --- p.92 / Chapter 6.4.1 --- Identify Individual components and copper PPR additivein standard bath --- p.92 / Chapter 6.4.2 --- Set up a calibration curve for the Copper Gleam PPR Additive --- p.95 / Chapter 6.4.3 --- Analysis of aged Copper Gleam PPR plating bath from production line --- p.96 / Chapter 6.4.5 --- Study of H202 effect --- p.101 / Chapter 6.4.6 --- Study of air agitation effect --- p.104 / Chapter 6.4.7 --- Study of Copper anode effect --- p.105 / Chapter 6.5 --- Conclusion --- p.107 / Chapter 6.6 --- References for Chapter 6 --- p.107 / Chapter Chapter 7 --- Silverjet220 bath HPLC analysis --- p.109 / Chapter 7.1 --- Introduction --- p.109 / Chapter 7.2 --- Experimental --- p.110 / Chapter 7.3 --- HPLC method development for monitoring Silverjet 220 process --- p.112 / Chapter 7.3.1 --- Identify individual components and Silverjet 220 Additive in the plating bath --- p.112 / Chapter 7.3.2 --- Optimize the condition for HPLC analysis --- p.117 / Chapter 7.3.3 --- Analysis of aged Silverjet 220 plating bath from production line --- p.119 / Chapter 7.4 --- Conclusion --- p.122 / Chapter 7.5 --- References for Chapter 7 --- p.123 / Chapter Chapter 8 --- Conclusions and Further Studies --- p.124 / Chapter 8.1 --- Conclusions --- p.124 / Chapter 8.2 --- Further Studies --- p.126 / APPENDIX --- p.128 / The User guide for HPLC --- p.128 / HPLC System Calibration Maintenance --- p.135 / HPLC System Preventive Maintenance --- p.145
|
Page generated in 0.0474 seconds